Accelerating sustainable semiconductors with ‘multielement ink’
Semiconductors are the heart of almost every electronic device. Without semiconductors, our computers would not be able to process and retain data; and LED (light-emitting diode) lightbulbs would lose their ability to shine.
But semiconductor manufacturing requires a lot of energy. Forming semiconductor materials from sand (silicon oxide) consumes a significant amount of heat-intensive energy, at scorching temperatures of around 2,700 degrees Fahrenheit. And the process of purifying and assembling all the raw materials that go into making a semiconductor can take weeks if not months.
A new semiconducting material called “multielement ink” could make that process significantly less heat-intensive and more sustainable. Developed by researchers from Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, “multielement ink” is the first “high-entropy” semiconductor that can be processed at low-temperature or room temperature. The breakthrough was recently reported in the journal Nature.
“The traditional way of making semiconductor devices is energy-intensive and one of the major sources of carbon emissions,” said Peidong Yang, the senior author on the study. Yang is a faculty senior scientist in Berkeley Lab’s Materials Sciences Division and professor of chemistry and materials science and engineering at UC Berkeley. “Our new method of making semiconductors could pave the way for a more sustainable semiconductor industry.”
The advance takes advantage of two unique families of semiconducting materials: hard alloys made of high-entropy semiconductors; and a soft, flexible material made of crystalline halide perovskites.
High-entropy materials are solids made of five or more different chemical elements that self-assemble in near-equal proportions into a single system. For many years, researchers have wanted to use high-entropy materials to develop semiconducting materials that self-assemble with minimal energy inputs.
“But high-entropy semiconductors have not been studied to nearly the same extent. Our work could help to significantly fill in that gap of understanding,” said Yuxin Jiang, co-first author and graduate student researcher in the Peidong Yang group with Berkeley Lab’s Materials Sciences Division and the department of chemistry at UC Berkeley. More