AI helps robots manipulate objects with their whole bodies
Imagine you want to carry a large, heavy box up a flight of stairs. You might spread your fingers out and lift that box with both hands, then hold it on top of your forearms and balance it against your chest, using your whole body to manipulate the box.
Humans are generally good at whole-body manipulation, but robots struggle with such tasks. To the robot, each spot where the box could touch any point on the carrier’s fingers, arms, and torso represents a contact event that it must reason about. With billions of potential contact events, planning for this task quickly becomes intractable.
Now MIT researchers found a way to simplify this process, known as contact-rich manipulation planning. They use an AI technique called smoothing, which summarizes many contact events into a smaller number of decisions, to enable even a simple algorithm to quickly identify an effective manipulation plan for the robot.
While still in its early days, this method could potentially enable factories to use smaller, mobile robots that can manipulate objects with their entire arms or bodies, rather than large robotic arms that can only grasp using fingertips. This may help reduce energy consumption and drive down costs. In addition, this technique could be useful in robots sent on exploration missions to Mars or other solar system bodies, since they could adapt to the environment quickly using only an onboard computer.
“Rather than thinking about this as a black-box system, if we can leverage the structure of these kinds of robotic systems using models, there is an opportunity to accelerate the whole procedure of trying to make these decisions and come up with contact-rich plans,” says H.J. Terry Suh, an electrical engineering and computer science (EECS) graduate student and co-lead author of a paper on this technique.
Joining Suh on the paper are co-lead author Tao Pang PhD ’23, a roboticist at Boston Dynamics AI Institute; Lujie Yang, an EECS graduate student; and senior author Russ Tedrake, the Toyota Professor of EECS, Aeronautics and Astronautics, and Mechanical Engineering, and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL). The research appears this week in IEEE Transactions on Robotics.
Learning about learning
Reinforcement learning is a machine-learning technique where an agent, like a robot, learns to complete a task through trial and error with a reward for getting closer to a goal. Researchers say this type of learning takes a black-box approach because the system must learn everything about the world through trial and error. More