Research team developing a nano-sized force sensor and improving high-precision microscopy technology
In many cases, cells are very active in their movement and serve as power generators. The ability of cells to produce physical forces is one of the basic functions of the body. When running, for example, the forces generated in the cells cause the muscles to contract and the breath to work. It has been possible to measure even the forces experienced by individual proteins by force sensors developed in the past, but previously intracellular forces and mechanical strains could not have been measured.
Together with the scientists from The Ohio State University OSU, cell biology researchers at Tampere University have developed a force sensor that can be attached to the side of a mechanically responding protein, allowing it to sense forces and strain on the protein within the cell.
The development of the micro-sized sensor began on a conference travel in December 2019.
“The power-sensing part is like a rubber band that changes colour when stretched. This part is attached to the antibodies at both ends of the rubber band, which bind to the cellular target protein under study. The force or elongation of the studied protein can then be detected under a microscope by following the elongation of the rubber band, i.e. the colour it produces,” says Teemu Ihalainen,a Senior Research Fellow from BioMediTech at Tampere University.
According to Ihalainen, the force sensor, which is only about twenty nanometres in size, can be easily generalised to a wide range of cell biology research and various target proteins. With the help of the protein biosensor, forces can be measured, for example, in the nuclear membrane, between different proteins, or generally in the cytoskeleton of the cell. It allows the mechanics of the cell to be transformed into visible form for the first time. There has already been great interest in this technology in various laboratories in Japan, India, Norway and the United States.
Internal forces of the cell provide information on the mechanics of cancer
Cells are subject to forces all the time, both in normal bodily functions and diseases. More