Harnessing artificial intelligence technology for IVF embryo selection
An artificial intelligence algorithm can determine non-invasively, with about 70 percent accuracy, if an in vitro fertilized embryo has a normal or abnormal number of chromosomes, according to a new study from researchers at Weill Cornell Medicine.
Having an abnormal number of chromosomes, a condition called aneuploidy, is a major reason embryos derived from in vitro fertilization (IVF) fail to implant or result in a healthy pregnancy. One of the current methods for detecting aneuploidy involves the biopsy-like sampling and genetic testing of cells from an embryo — an approach that adds cost to the IVF process and is invasive to the embryo. The new algorithm, STORK-A, described in a paper published Dec. 19 in Lancet Digital Health, can help predict aneuploidy without the disadvantages of biopsy. It operates by analyzing microscope images of the embryo and incorporates information about maternal age and the IVF clinic’s scoring of the embryo’s appearance.
“Our hope is that we’ll ultimately be able to predict aneuploidy in a completely non-invasive way, using artificial intelligence and computer vision techniques,” said study senior author Dr. Iman Hajirasouliha, associate professor of computational genomics and of physiology and biophysics at Weill Cornell Medicine and a member of the Englander Institute for Precision Medicine.
The study’s first author is Josue Barnes, a doctoral student in the Weill Cornell Graduate School of Medical Sciences who studies in the Hajirasouliha Laboratory. Dr. Nikica Zaninovic, associate professor of embryology in clinical obstetrics and gynecology and director of the Embryology Laboratory at the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine at Weill Cornell Medicine and NewYork-Presbyterian/Weill Cornell Medical Center led the embryology work for the study.
According to the U.S. Centers for Disease Control and Prevention, there were more than 300,000 IVF cycles performed in the United States in 2020, resulting in about 80,000 live births. IVF experts are always looking for ways to boost that success rate, to achieve more successful pregnancies with fewer embryo transfers — which means developing better methods for identifying viable embryos.
Fertility clinic staff currently use microscopy to assess embryos for large-scale abnormalities that correlate with poor viability. To obtain information about the chromosomes, clinic staff may also use a biopsy method called preimplantation genetic testing for aneuploidy (PGT-A), predominantly in women over the age of 37. More