AI model proactively predicts if a COVID-19 test might be positive or not
COVID-19 and its latest Omicron strains continue to cause infections across the country as well as globally. Serology (blood) and molecular tests are the two most commonly used methods for rapid COVID-19 testing. Because COVID-19 tests use different mechanisms, they vary significantly. Molecular tests measure the presence of viral SARS-CoV-2 RNA while serology tests detect the presence of antibodies triggered by the SARS-CoV-2 virus.
Currently, there is no existing study on the correlation between serology and molecular tests and which COVID-19 symptoms play a key role in producing a positive test result. A study from Florida Atlantic University’s College of Engineering and Computer Science using machine learning provides important new evidence in understanding how molecular tests versus serology tests are correlated, and what features are the most useful in distinguishing between COVID-19 positive versus test outcomes.
Researchers from the College of Engineering and Computer Science trained five classification algorithms to predict COVID-19 test results. They created an accurate predictive model using easy-to-obtain symptom features, along with demographic features such as number of days post-symptom onset, fever, temperature, age and gender.
The study demonstrates that machine-learning models, trained using simple symptom and demographic features, can help predict COVID-19 infections. Results, published in the journal Smart Health, identify the key symptom features associated with COVID-19 infection and provide a way for rapid screening and cost effective infection detection.
Findings reveal that number of days experiencing symptoms such as fever and difficulty breathing play a large role in COVID-19 test results. Findings also show that molecular tests have much narrower post-symptom onset days (between three to eight days), compared to post-symptom onset days of serology tests (between five to 38 days). As a result, the molecular test has the lowest positive rate because it measures current infection.
Furthermore, COVID-19 tests vary significantly, partially because donors’ immune response and viral load — the target of different test methods — continuously change. Even for the same donor, it might be possible to observe different positive/negative results from two types of tests. More
