Exploring quantum electron highways with laser light
Topological insulators, or TIs, have two faces: Electrons flow freely along their surface edges, like cars on a superhighway, but can’t flow through the interior of the material at all. It takes a special set of conditions to create this unique quantum state — part electrical conductor, part insulator — which researchers hope to someday exploit for things like spintronics, quantum computing and quantum sensing. For now, they’re just trying to understand what makes TIs tick.
In the latest advance along those lines, researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University systematically probed the “phase transition” in which a TI loses its quantum properties and becomes just another ordinary insulator.
They did this by using spiraling beams of laser light to generate harmonics — much like the vibrations of a plucked guitar string — from the material they were examining. Those harmonics make it easy to distinguish what’s happening in the superhighway layer from what’s happening in the interior and see how one state gives way to the other, they reported in Nature Photonics today.
“The harmonics generated by the material amplify the effects we want to measure, making this a very sensitive way to see what’s going on in a TI,” said Christian Heide, a postdoctoral researcher with the Stanford PULSE Institute at SLAC, who led the experiments.
“And since this light-based approach can be done in a lab with tabletop equipment, it makes exploring these materials easier and more accessible than some previous methods.”
These results are exciting, added PULSE principal investigator Shambhu Ghimire, because they show the new method has potential for watching TIs flip back and forth between superhighway and insulating states as it happens and in fine detail — much like a using camera with a very fast shutter speed. More