How to help assembly-line robots shift gears and pick up almost anything
At the beginning of the COVID-19 pandemic, car manufacturing companies such as Ford quickly shifted their production focus from automobiles to masks and ventilators.
To make this switch possible, these companies relied on people working on an assembly line. It would have been too challenging for a robot to make this transition because robots are tied to their usual tasks.
Theoretically, a robot could pick up almost anything if its grippers could be swapped out for each task. To keep costs down, these grippers could be passive, meaning grippers pick up objects without changing shape, similar to how the tongs on a forklift work.
A University of Washington team created a new tool that can design a 3D-printable passive gripper and calculate the best path to pick up an object. The team tested this system on a suite of 22 objects — including a 3D-printed bunny, a doorstop-shaped wedge, a tennis ball and a drill. The designed grippers and paths were successful for 20 of the objects. Two of these were the wedge and a pyramid shape with a curved keyhole. Both shapes are challenging for multiple types of grippers to pick up.
The team will present these findings Aug. 11 at SIGGRAPH 2022.
“We still produce most of our items with assembly lines, which are really great but also very rigid. The pandemic showed us that we need to have a way to easily repurpose these production lines,” said senior author Adriana Schulz, a UW assistant professor in the Paul G. Allen School of Computer Science & Engineering. “Our idea is to create custom tooling for these manufacturing lines. That gives us a very simple robot that can do one task with a specific gripper. And then when I change the task, I just replace the gripper.”
Passive grippers can’t adjust to fit the object they’re picking up, so traditionally, objects have been designed to match a specific gripper. More