Go with the flow: New findings about moving electricity could improve fusion devices
Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have found that updating a mathematical model to include a physical property known as resistivity could lead to the improved design of doughnut-shaped fusion facilities known as tokamaks.
“Resistivity is the property of any substance that inhibits the flow of electricity,” said PPPL physicist Nathaniel Ferraro, one of the collaborating researchers. “It’s kind of like the viscosity of a fluid, which inhibits things moving through it. For example, a stone will move more slowly through molasses than water, and more slowly through water than through air.”
Scientists have discovered a new way that resistivity can cause instabilities in the plasma edge, where temperatures and pressures rise sharply. By incorporating resistivity into models that predict the behavior of plasma, a soup of electrons and atomic nuclei that makes up 99% of the visible universe, scientists can design systems for future fusion facilities that make the plasma more stable.
“We want to use this knowledge to figure out how to develop a model that allows us to plug in certain plasma characteristics and predict whether the plasma will be stable before we actually do an experiment,” said Andreas Kleiner, a PPPL physicist who was the lead author of a paper reporting the results in Nuclear Fusion. “Basically, in this research, we saw that resistivity matters and our models ought to include it,” Kleiner said.
Fusion, the power that drives the sun and stars, combines light elements in the form of plasma — the hot, charged state of matter composed of free electrons and atomic nuclei — and generates massive amounts of energy. Scientists seek to harness fusion on Earth for a virtually inexhaustible supply of power to generate electricity.
Scientists want the plasma to be stable because instabilities can lead to plasma eruptions known as edge-localized modes (ELMs) that can damage internal components of the tokamak over time, requiring those components to be replaced more frequently. Future fusion reactors will have to run without stopping for repairs, however, for months at a time. More
