Breakthrough in quantum universal gate sets: A high-fidelity iToffoli gate
High-fidelity quantum logic gates applied to quantum bits (qubits) are the basic building blocks of programmable quantum circuits. Researchers at the Advanced Quantum Testbed (AQT) at Lawrence Berkeley National Laboratory (Berkeley Lab) conducted the first experimental demonstration of a three-qubit high-fidelity iToffoli native gate in a superconducting quantum information processor and in a single step.
Noisy intermediate-scale quantum processors typically support one- or two-qubit native gates, the types of gates that can be implemented directly by hardware. More complex gates are implemented by breaking them up into sequences of native gates. The team’s demonstration adds a novel and robust native three-qubit iToffoli gate for universal quantum computing. Furthermore, the team demonstrated a very high fidelity operation of the gate at 98.26%. The team’s experimental breakthrough was published in Nature Physics this May.
Quantum Logic Gates, Quantum Circuits
The Toffoli or the controlled-controlled-NOT (CCNOT) is a key logical gate in classical computing because it is universal, so it can build all logic circuits to compute any desired binary operation. Furthermore, it is reversible, which allows the determination and recovery of the binary inputs (bits) from the outputs, so no information is lost.
In quantum circuits, the input qubit can be in a superposition of 0 and 1 states. The qubit is physically connected to other qubits in the circuit, which makes it more difficult to implement a high-fidelity quantum gate as the number of qubits increases. The fewer quantum gates needed to compute an operation, the shorter the quantum circuit, thereby improving the implementation of an algorithm before the qubits decohere causing errors in the final result. Therefore, reducing the complexity and running time of quantum gates is critical.
In tandem with the Hadamard gate, the Toffoli gate forms a universal quantum gate set, which allows researchers to run any quantum algorithm. Experiments implementing multi-qubit gates in major computing technologies — superconducting circuits, trapped ions, and Rydberg atoms — successfully demonstrated Toffoli gates on three-qubit gates with fidelities averaging between 87% and 90%. However, such demonstrations required researchers to break up the Toffoli gates into one- and two-qubit gates, making the gate operation time longer and degrading their fidelity. More