The quest for an ideal quantum bit
New qubit platform could transform quantum information science and technology.
You are no doubt viewing this article on a digital device whose basic unit of information is the bit, either 0 or 1. Scientists worldwide are racing to develop a new kind of computer based on use of quantum bits, or qubits.
In a recent Nature paper, a team led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory has announced the creation of a new qubit platform formed by freezing neon gas into a solid at very low temperatures, spraying electrons from a light bulb’s filament onto the solid, and trapping a single electron there. This system shows great promise to be developed into ideal building blocks for future quantum computers.
To realize a useful quantum computer, the quality requirements for the qubits are extremely demanding. While there are various forms of qubits today, none of them is ideal.
What would make an ideal qubit? It has at least three sterling qualities, according to Dafei Jin, an Argonne scientist and the principal investigator of the project.
It can remain in a simultaneous 0 and 1 state (remember the cat!) over a long time. Scientists call this long “coherence.” Ideally, that time would be around a second, a time step that we can perceive on a home clock in our daily life. More