Scientists use AI to update data vegetation maps for improved wildfire forecasts
A new technique developed by the National Center for Atmospheric Research (NCAR) uses artificial intelligence to efficiently update the vegetation maps that are relied on by wildfire computer models to accurately predict fire behavior and spread.
In a recent study, scientists demonstrated the method using the 2020 East Troublesome Fire in Colorado, which burned through land that was mischaracterized in fuel inventories as being healthy forest. In fact the fire, which grew explosively, scorched a landscape that had recently been ravaged by pine beetles and windstorms, leaving significant swaths of dead and downed timber.
The research team compared simulations of the fire generated by a state-of-the-art wildfire behavior model developed at NCAR using both the standard fuel inventory for the area and one that was updated with artificial intelligence (AI). The simulations that used the AI-updated fuels did a significantly better job of predicting the area burned by the fire, which ultimately grew to more than 190,000 acres of land on both sides of the continental divide.
“One of our main challenges in wildfire modeling has been to get accurate input, including fuel data,” said NCAR scientist and lead author Amy DeCastro. “In this study, we show that the combined use of machine learning and satellite imagery provides a viable solution.”
The research was funded by the U.S. National Science Foundation, which is NCAR’s sponsor. The modeling simulations were run at the NCAR-Wyoming Supercomputing Center on the Cheyenne system.
Using satellites to account for pine beetle damage
For a model to accurately simulate a wildfire, it requires detailed information about the current conditions. This includes the local weather and terrain as well as the characteristics of the plant matter that provides fuel for the flames — what’s actually available to burn and what condition it’s in. Is it dead or alive? Is it moist or dry? What type of vegetation is it? How much is there? How deep is the fuel layered on the ground? More