New platform optimizes selection of combination cancer therapies
Researchers at The University of Texas MD Anderson Cancer Center have developed a new bioinformatics platform that predicts optimal treatment combinations for a given group of patients based on co-occurring tumor alterations. In retrospective validation studies, the tool selected combinations that resulted in improved patient outcomes across both pre-clinical and clinical studies.
The findings were presented today at the American Association for Cancer Research (AACR) Annual Meeting 2022 by principal investigator Anil Korkut, Ph.D., assistant professor of Bioinformatics and Computational Biology. The study results also were published today in Cancer Discovery.
The platform, called REcurrent Features LEveraged for Combination Therapy (REFLECT), integrates machine learning and cancer informatics algorithms to analyze biological tumor features — including genetic mutations, copy number changes, gene expression and protein expression aberrations — and identify frequent co-occurring alterations that could be targeted by multiple drugs.
“Our ultimate goal is to make precision oncology more effective and create meaningful patient benefit,” Korkut said. “We believe REFLECT may be one of the tools that can help overcome some of the current challenges in the field by facilitating both the discovery and the selection of combination therapies matched to the molecular composition of tumors.”
Targeted therapies have improved clinical outcomes for many patients with cancer, but monotherapies against a single target often lead to treatment resistance. Cancer cells frequently rely on co-occurring alterations, such as mutations in two signaling pathways, to drive tumor progression. Increasing evidence suggests that identifying and targeting both alterations simultaneously could increase durable responses, Korkut explained.
Led by Korkut and postdoctoral fellow Xubin Li, Ph.D., the researchers built and used the REFLECT tool to develop a systematic and unbiased approach to match patients with optimal combination therapies. More