Mathematical paradoxes demonstrate the limits of AI
Humans are usually pretty good at recognising when they get things wrong, but artificial intelligence systems are not. According to a new study, AI generally suffers from inherent limitations due to a century-old mathematical paradox.
Like some people, AI systems often have a degree of confidence that far exceeds their actual abilities. And like an overconfident person, many AI systems don’t know when they’re making mistakes. Sometimes it’s even more difficult for an AI system to realise when it’s making a mistake than to produce a correct result.
Researchers from the University of Cambridge and the University of Oslo say that instability is the Achilles’ heel of modern AI and that a mathematical paradox shows AI’s limitations. Neural networks, the state of the art tool in AI, roughly mimic the links between neurons in the brain. The researchers show that there are problems where stable and accurate neural networks exist, yet no algorithm can produce such a network. Only in specific cases can algorithms compute stable and accurate neural networks.
The researchers propose a classification theory describing when neural networks can be trained to provide a trustworthy AI system under certain specific conditions. Their results are reported in the Proceedings of the National Academy of Sciences.
Deep learning, the leading AI technology for pattern recognition, has been the subject of numerous breathless headlines. Examples include diagnosing disease more accurately than physicians or preventing road accidents through autonomous driving. However, many deep learning systems are untrustworthy and easy to fool.
“Many AI systems are unstable, and it’s becoming a major liability, especially as they are increasingly used in high-risk areas such as disease diagnosis or autonomous vehicles,” said co-author Professor Anders Hansen from Cambridge’s Department of Applied Mathematics and Theoretical Physics. “If AI systems are used in areas where they can do real harm if they go wrong, trust in those systems has got to be the top priority.”
The paradox identified by the researchers traces back to two 20th century mathematical giants: Alan Turing and Kurt Gödel. At the beginning of the 20th century, mathematicians attempted to justify mathematics as the ultimate consistent language of science. However, Turing and Gödel showed a paradox at the heart of mathematics: it is impossible to prove whether certain mathematical statements are true or false, and some computational problems cannot be tackled with algorithms. And, whenever a mathematical system is rich enough to describe the arithmetic we learn at school, it cannot prove its own consistency. More