New approach to flexible robotics and metamaterials design mimics nature, encourages sustainability
A new study challenges the conventional approach to designing soft robotics and a class of materials called metamaterials by utilizing the power of computer algorithms. Researchers from the University of Illinois Urbana-Champaign and Technical University of Denmark can now build multimaterial structures without dependence on human intuition or trial-and-error to produce highly efficient actuators and energy absorbers that mimic designs found in nature.
The study, led by Illinois civil and environmental engineering professor Shelly Zhang, uses optimization theory and an algorithm-based design process called topology optimization. Also known as digital synthesis, the design process builds composite structures that can precisely achieve complex prescribed mechanical responses.
The study results are published in the Proceedings of the National Academy of Sciences.
“The complex mechanical responses called for in soft robotics and metamaterials require the use of multiple materials — but building these types of structures can be a challenge,” Zhang said. “There are so many materials to choose from, and determining the optimal combination of materials to fit a specific function presents an overwhelming amount of data for a researcher to process.”
Zhang’s team set its sights on designing macroscale structures with the prescribed properties of swift stiffening, large-scale deformation buckling, multiphase stability and long-lasting force plateaus.
The new digital synthesis process generated structures with optimal geometric characteristics composed of the optimal materials for the prescribed functions. More