The puzzle of the 'lost' angular momentum
In a closed physical system, the sum of all angular momentum remains constant — says an important physical law of conservation. Angular momentum does not necessarily need to involve “real” bodily rotation in this context: Magnetic materials even have angular momentum when, seen from outside, they are at rest. Physicists Albert Einstein and Wander Johannes de Haas were able to prove that already in 1915.
If such a magnetized material is now bombarded with short pulses of laser light, it loses its magnetic order extremely quickly. Within femtoseconds — a millionth of a billionth second — it becomes demagnetized. The electrons’ angular momentum in the material — also called spin — thus decreases abruptly, much faster than the material can set itself in rotation. According to the conservation principle, however, the angular momentum cannot simply be lost. So, where is the spin angular momentum transferred to in such an extremely short time?
The solution to the puzzle was now published in the scientific journal Nature. In the study, a team led by Konstanz researchers investigated the demagnetization of nickel crystals using ultrafast electron diffraction — a highly precise measuring method in terms of time and space that can make the course of structural changes visible at the atomic level. They were able to show that the electrons of the crystal transfer their angular momentum to the atoms of the crystal lattice within a few hundred femtoseconds during demagnetization. Much like the passengers on a merry-go-round, the atoms are set in motion on tiny circuits and thus balance the angular momentum. It is only much later and more slowly that the macroscopic rotation effect named after Einstein and de Haas begins, which can be measured mechanically. These findings show new ways of controlling angular momentum extremely quickly, opening up new possibilities for improving magnetic information technologies or new research directions in spintronics.
Magnetism in metallic solids
Magnetic phenomena have become an indispensable part of modern technology. They play an important role especially in information processing and data storage. “The speed and efficiency of existing technologies is often limited by the comparatively long duration of magnetic switching processes,” explains Professor Peter Baum, experimental physicist at the University of Konstanz and one of the heads of the study. All the more interesting for materials research, therefore, is a surprising phenomenon that can be observed in nickel, among other things: ultrafast demagnetization caused by bombardment with laser pulses.
Just like iron, nickel physically belongs to the ferromagnetic materials. Permanent magnets as we know them from our everyday lives can be made from these materials, for example refrigerator magnets. The permanent magnetization results from a parallel arrangement of the magnetic moments of neighbouring particles of the material. “To illustrate this, we can imagine the magnetic moments as small arrows that all point in the same direction,” explains Professor Ulrich Nowak, theoretical physicist at the University of Konstanz and also one of the project leaders. Physically, the angular momentum or spin of the electrons of the ferromagnetic material mainly is the cause for these “arrows” and their direction. More
