Just by changing its shape, scientists show they can alter material properties
By confining the transport of electrons and ions in a patterned thin film, scientists find a way to potentially enhance material properties for design of next-generation electronics
Like ripples in a pond, electrons travel like waves through materials, and when they collide and interact, they can give rise to new and interesting patterns.
Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have seen a new kind of wave pattern emerge in a thin film of metal oxide known as titania when its shape is confined. Confinement, the act of restricting materials within a boundary, can alter the properties of a material and the movement of molecules through it.
In the case of titania, it caused electrons to interfere with each other in a unique pattern, which increased the oxide’s conductivity, or the degree to which it conducts electricity. This all happened at the mesoscale, a scale where scientists can see both quantum effects and the movement of electrons and molecules.
In all, this work offers scientists more insight about how atoms, electrons and other particles behave at the quantum level. Such information could aid in designing new materials that can process information and be useful in other electronic applications.
“What really set this work apart was the size of the scale we investigated,” said lead author Frank Barrows, a Northwestern University graduate student in Argonne’s Materials Science Division (MSD). “Investigating at this unique length scale enabled us to see really interesting phenomena that indicate there is interference happening at the quantum level, and at the same time gain new information about how electrons and ions interact.”
Altering geometry to change material properties More