Quantum materials cut closer than ever
DTU and Graphene Flagship researchers have taken the art of patterning nanomaterials to the next level. Precise patterning of 2D materials is a route to computation and storage using 2D materials, which can deliver better performance and much lower power consumption than today’s technology.
One of the most significant recent discoveries within physics and material technology is two-dimensional materials such as graphene. Graphene is stronger, smoother, lighter, and better at conducting heat and electricity than any other known material.
Their most unique feature is perhaps their programmability. By creating delicate patterns in these materials, we can change their properties dramatically and possibly make precisely what we need.
At DTU, scientists have worked on improving state of the art for more than a decade in patterning 2D materials, using sophisticated lithography machines in the 1500 m2 cleanroom facility. Their work is based in DTU’s Center for Nanostructured Graphene, supported by the Danish National Research Foundation and a part of The Graphene Flagship.
The electron beam lithography system in DTU Nanolab can write details down to 10 nanometers. Computer calculations can predict exactly the shape and size of patterns in the graphene to create new types of electronics. They can exploit the charge of the electron and quantum properties such as spin or valley degrees of freedom, leading to high-speed calculations with far less power consumption. These calculations, however, ask for higher resolution than even the best lithography systems can deliver: atomic resolution.
“If we really want to unlock the treasure chest for future quantum electronics, we need to go below 10 nanometers and approach the atomic scale,” says professor and group leader at DTU Physics, Peter Bøggild. More