Finding a metal-oxide needle in a periodic table haystack
I went to Caltech, and all I got was this T-shirt … and a new way to discover complex and interesting materials.
Coupling computer automation with an ink-jet printer originally used to print T-shirt designs, researchers at Caltech and Google have developed a high-throughput method of identifying novel materials with interesting properties. In a trial run of the process, they screened hundreds of thousands of possible new materials and discovered one made from cobalt, tantalum, and tin that has tunable transparency and acts as a good catalyst for chemical reactions while remaining stable in strong acid electrolytes.
The effort, described in a scientific article published in Proceedings of the National Academy of Sciences(PNAS), was led by John Gregoire and Joel Haber of Caltech, and Lusann Yang of Google. It builds on research conducted at the Joint Center for Artificial Photosynthesis (JCAP), a Department of Energy (DOE) Energy Innovation Hub at Caltech, and continues with JCAP’s successor, the Liquid Sunlight Alliance (LiSA), a DOE-funded effort that aims to streamline the complicated steps needed to convert sunlight into fuels, to make that process more efficient.
Creating new materials is not as simple as dropping a few different elements into a test tube and shaking it up to see what happens. You need the elements that you combine to bond with each other at the atomic level to create something new and different rather than just a heterogeneous mixture of ingredients. With a nearly infinite number of possible combinations of the various squares on the periodic table, the challenge is knowing whichcombinations will yield such a material.
“Materials discovery can be a bleak process. If you can’t predict where to find the desired properties, you could spend your entire career mixing random elements and never find anything interesting,” says Gregoire, research professor of applied physics and materials science, researcher at JCAP, and LiSA team lead.
When combining a small number of individual elements, materials scientists can often make predictions about what properties a new material might have based on its constituent parts. However, that process quickly becomes untenable when more complicated mixtures are made. More
