Mixing a cocktail of topology and magnetism for future electronics
A new Monash review throws the spotlight on recent research in heterostructures of topological insulators and magnetic materials.
In such heterostructures, the interesting interplay of magnetism and topology can give rise to new phenomena such as quantum anomalous Hall insulators, axion insulators and skyrmions. All of these are promising building blocks for future low-power electronics.
Provided suitable candidate materials are found, there is a possibility to realise these exotic states at room temperature and without any magnetic field, hence aiding FLEET’s search for future low-energy, beyond-CMOS electronics.
“Our aim was to investigate promising new methods of achieving the quantum Hall effect,” says the new study’s lead author, Dr Semonti Bhattacharyya at Monash University.
The quantum Hall effect (QHE) is a topological phenomenon that allows high-speed electrons to flow at a material’s edge, which is potentially useful for future low- energy electronics and spintronics.
“However, a severe bottleneck for this technology being useful is the fact that quantum Hall effect always requires high magnetic fields, which are not possible without either high energy use or cryogenic cooling.”
“There’s no point in developing ‘low energy’ electronics that consume more energy to make them work!” says Dr Bhattacharyya, who is a Research Fellow at FLEET, seeking new generation of low-energy electronics. More
