Using AI to predict 3D printing processes
Additive manufacturing has the potential to allow one to create parts or products on demand in manufacturing, automotive engineering, and even in outer space. However, it’s a challenge to know in advance how a 3D printed object will perform, now and in the future.
Physical experiments — especially for metal additive manufacturing (AM) — are slow and costly. Even modeling these systems computationally is expensive and time-consuming.
“The problem is multi-phase and involves gas, liquids, solids, and phase transitions between them,” said University of Illinois Ph.D. student Qiming Zhu. “Additive manufacturing also has a wide range of spatial and temporal scales. This has led to large gaps between the physics that happens on the small scale and the real product.”
Zhu, Zeliang Liu (a software engineer at Apple), and Jinhui Yan (professor of Civil and Environmental Engineering at the University of Illinois), are trying to address these challenges using machine learning. They are using deep learning and neural networks to predict the outcomes of complex processes involved in additive manufacturing.
“We want to establish the relationship between processing, structure, properties, and performance,” Zhu said.
Current neural network models need large amounts of data for training. But in the additive manufacturing field, obtaining high-fidelity data is difficult, according to Zhu. To reduce the need for data, Zhu and Yan are pursuing ‘physics informed neural networking,’ or PINN. More
