Let's talk about the elephant in the data
You would not be surprised to see an elephant in the savanna or a plate in your kitchen. Based on your prior experiences and knowledge, you know that is where elephants and plates are often to be found. If you saw a mysterious object in your kitchen, how would you figure out what it was? You would rely on your expectations or prior knowledge. Should a computer approach the problem in the same way? The answer may surprise you. Cold Spring Harbor Laboratory Professor Partha Mitra described how he views problems like these in a “Perspective” in Nature Machine Intelligence. He hopes his insights will help researchers teach computers how to analyze complex systems more effectively.
 Mitra thinks it helps to understand the nature of knowledge. Mathematically speaking, many data scientists try to create a model that can “fit an elephant,” or a set of complex data points. Mitra asks researchers to consider what philosophical framework would work best for a particular machine learning task:
 “In philosophical terms, the idea is that there are these two extremes. One, you could say “rationalist,” and the other “empiricist” points of view. And really, it’s about the role of prior knowledge or prior assumptions.”
 Rationalists versus empiricists
 A rationalist views the world through the lens of prior knowledge. They expect a plate to be in a kitchen and an elephant in a savanna.
 An empiricist analyzes the data exactly as it is presented. When they visit the savanna, they no more expect to see an elephant than they do a plate. More
 
 
