Reaching your life goals as a single-celled organism
How is it possible to move in the desired direction without a brain or nervous system? Single-celled organisms apparently manage this feat without any problems: for example, they can swim towards food with the help of small flagellar tails.
How these extremely simply built creatures manage to do this was not entirely clear until now. However, a research team at TU Wien (Vienna) has now been able to simulate this process on the computer: They calculated the physical interaction between a very simple model organism and its environment. This environment is a liquid with a non-uniform chemical composition, it contains food sources that are unevenly distributed.
The simulated organism was equipped with the ability to process information about food in its environment in a very simple way. With the help of a machine learning algorithm, the information processing of the virtual being was then modified and optimised in many evolutionary steps. The result was a computer organism that moves in its search for food in a very similar way to its biological counterparts.
Chemotaxis: Always going where the chemistry is right
“At first glance, it is surprising that such a simple model can solve such a difficult task,” says Andras Zöttl, who led the research project, which was carried out in the “Theory of Soft Matter” group (led by Gerhard Kahl) at the Institute of Theoretical Physics at TU Wien. “Bacteria can use receptors to determine in which direction, for example, the oxygen or nutrient concentration is increasing, and this information then triggers a movement into the desired direction. This is called chemotaxis.”
The behaviour of other, multicellular organisms can be explained by the interconnection of nerve cells. But a single-celled organism has no nerve cells — in this case, only extremely simple processing steps are possible within the cell. Until now, it was not clear how such a low degree of complexity could be sufficient to connect simple sensory impressions — for example from chemical sensors — with targeted motor activity. More