The incredible bacterial 'homing missiles' that scientists want to harness
Imagine there are arrows that are lethal when fired on your enemies yet harmless if they fall on your friends. It’s easy to see how these would be an amazing advantage in warfare, if they were real. However, something just like these arrows does indeed exist, and they are used in warfare … just on a different scale.
These weapons are called tailocins, and the reality is almost stranger than fiction.
“Tailocins are extremely strong protein nanomachines made by bacteria,” explained Vivek Mutalik, a research scientist at Lawrence Berkeley National Laboratory (Berkeley Lab) who studies tailocins and phages, the bacteria-infecting viruses that tailocins appear to be remnants of. “They look like phages but they don’t have the capsid, which is the ‘head’ of the phage that contains the viral DNA and replication machinery. So, they’re like a spring-powered needle that goes and sits on the target cell, then appears to poke all the way through the cell membrane making a hole to the cytoplasm, so the cell loses its ions and contents and collapses.”
A wide variety of bacteria are capable of producing tailocins, and seem to do so under stress conditions. Because the tailocins are only lethal to specific strains — so specific, in fact, that they have earned the nickname “bacterial homing missiles” — tailocins appear to be a tool used by bacteria to compete with their rivals. Due to their similarity with phages, scientists believe that the tailocins are produced by DNA that was originally inserted into bacterial genomes during viral infections (viruses give their hosts instructions to make more of themselves), and over evolutionary time, the bacteria discarded the parts of the phage DNA that weren’t beneficial but kept the parts that could be co-opted for their own benefit.
But, unlike most abilities that are selected through evolution, tailocins do not save the individual. According to Mutalik, bacteria are killed if they produce tailocins, just as they would be if they were infected by true phage virus, because the pointed nanomachines erupt through the membrane to exit the producing cell much like replicated viral particles. But once released, the tailocins only target certain strains, sparing the other cells of the host lineage.
“They benefit kin but the individual is sacrificed, which is a type of altruistic behavior. But we don’t yet understand how this phenomenon happens in nature,” said Mutalik. Scientists also don’t know precisely how the stabbing needle plunger of the tailocin functions. More