More stories

  • in

    Single photons from a silicon chip

    Quantum technology holds great promise: Just a few years from now, quantum computers are expected to revolutionize database searches, AI systems, and computational simulations. Today already, quantum cryptography can guarantee absolutely secure data transfer, albeit with limitations. The greatest possible compatibility with our current silicon-based electronics will be a key advantage. And that is precisely where physicists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and TU Dresden have made remarkable progress: The team has designed a silicon-based light source to generate single photons that propagate well in glass fibers.
    Quantum technology relies on the ability to control the behavior of quantum particles as precisely as possible, for example by locking individual atoms in magnetic traps or by sending individual light particles — called photons — through glass fibers. The latter is the basis of quantum cryptography, a communication method that is, in principle, tap-proof: Any would-be data thief intercepting the photons unavoidably destroys their quantum properties. The senders and receivers of the message will notice that and can stop the compromised transmission in time.
    This requires light sources that deliver single photons. Such systems already exist, especially based on diamonds, but they have one flaw: “These diamond sources can only generate photons at frequencies that are not suitable for fiber optic transmission,” explains HZDR physicist Dr. Georgy Astakhov. “Which is a significant limitation for practical use.” So Astakhov and his team decided to use a different material — the tried and tested electronic base material silicon.
    100,000 single photons per second
    To make the material generate the infrared photons required for fiber optic communication, the experts subjected it to a special treatment, selectively shooting carbon into the silicon with an accelerator at the HZDR Ion Beam Center. This created what is called G-centers in the material — two adjacent carbon atoms coupled to a silicon atom forming a sort of artificial atom.
    When radiated with red laser light, this artificial atom emits the desired infrared photons at a wavelength of 1.3 micrometers, a frequency excellently suited for fiber optic transmission. “Our prototype can produce 100,000 single photons per second,” Astakhov reports. “And it is stable. Even after several days of continuous operation, we haven’t observed any deterioration.” However, the system only works in extremely cold conditions — the physicists use liquid helium to cool it down to a temperature of minus 268 degrees Celsius.
    “We were able to show for the first time that a silicon-based single-photon source is possible,” Astakhov’s colleague Dr. Yonder Berencén is happy to report. “This basically makes it possible to integrate such sources with other optical components on a chip.” Among other things, it would be of interest to couple the new light source with a resonator to solve the problem that infrared photons largely emerge from the source randomly. For use in quantum communication, however, it would be necessary to generate photons on demand.
    Light source on a chip
    This resonator could be tuned to exactly hit the wavelength of the light source, which would make it possible to increase the number of generated photons to the point that they are available at any given time. “It has already been proven that such resonators can be built in silicon,” reports Berencén. “The missing link was a silicon-based source for single photons. And that’s exactly what we’ve now been able to create.”
    But before they can consider practical applications, the HZDR researchers still have to solve some problems — such as a more systematic production of the new telecom single-photon sources. “We will try to implant the carbon into silicon with greater precision,” explains Georgy Astakhov. “HZDR with its Ion Beam Center provides an ideal infrastructure for realizing ideas like this.”

    Story Source:
    Materials provided by Helmholtz-Zentrum Dresden-Rossendorf. Note: Content may be edited for style and length. More

  • in

    Ultra-fast magnetic switching with potential to transform fiber optical communications

    Researchers at CRANN and the School of Physics at Trinity College Dublin have discovered that a new material can act as a super-fast magnetic switch. When struck by successive ultra-short laser pulses it exhibits “toggle switching” that could increase the capacity of the global fibre optic cable network by an order of magnitude.
    Expanding the capacity of the internet
    Switching between two states — 0 and 1 — is the basis of digital technology and the backbone of the internet. The vast majority of all the data we download is stored magnetically in huge data centres across the world, linked by a network of optical fibres.
    Obstacles to further progress with the internet are three-fold, specifically the speed and energy consumption of the semiconducting or magnetic switches that process and store our data and the capacity of the fibre optic network to handle it.
    The new discovery of ultra-fast toggle switching using laser light on mirror-like films of an alloy of manganese, ruthenium and gallium known as MRG could help with all three problems.
    Not only does light offer a great advantage when it comes to speed but magnetic switches need no power to maintain their state. More importantly, they now offer the prospect of rapid time-domain multiplexing of the existing fibre network, which could enable it to handle ten times as much data.

    advertisement

    The science behind magnetic switching
    Working in the photonics laboratory at CRANN, Trinity’s nanoscience research centre, Dr Chandrima Banerjee and Dr Jean Besbas used ultra-fast laser pulses lasting just a hundred femtoseconds (one ten thousand billionth of a second) to switch the magnetisation of thin films of MRG back and forth. The direction of magnetisation can point either in or out of the film.
    With every successive laser pulse, it abruptly flips its direction. Each pulse is thought to momentarily heat the electrons in MRG by about 1,000 degrees, which leads to a flip of its magnetisation. The discovery of ultra-fast toggle switching of MRG has just been published in leading international journal, Nature Communications.
    Dr Karsten Rode, Senior Research Fellow in the ‘Magnetism and Spin Electronics Group’ in Trinity’s School of Physics, suggests that the discovery just marks the beginning of an exciting new research direction. Dr Rode said:
    “We have a lot of work to do to fully understand the behaviour of the atoms and electrons in a solid that is far from equilibrium on a femtosecond timescale. In particular, how can magnetism change so quickly while obeying the fundamental law of physics that says that angular momentum must be conserved?
    “In the spirit of our spintronics team, we will now gather data from new pulsed-laser experiments on MRG, and other materials, to better understand these dynamics and link the ultra-fast optical response with electronic transport. We plan experiments with ultra-fast electronic pulses to test the hypothesis that the origin of the toggle switching is purely thermal.”
    Next year Chandrima will continue her work at the University of Haifa, Israel, with a group who can generate even shorter laser pulses. The Trinity researchers, led by Karsten, plan a new joint project with collaborators in the Netherlands, France, Norway and Switzerland, aimed at proving the concept of ultra-fast, time-domain multiplexing of fibre-optic channels.

    Story Source:
    Materials provided by Trinity College Dublin. Note: Content may be edited for style and length. More

  • in

    Artificial intelligence and machine learning could enhance scientific peer review, researchers say

    As the COVID-19 pandemic has swept the world, researchers have published hundreds of papers each week reporting their findings — many of which have not undergone a thorough peer review process to gauge their reliability.
    In some cases, poorly validated research has massively influenced public policy, as when a French team reported COVID patients were cured by a combination of hydroxychloroquine and azithromycin. The claim was widely publicized, and soon U.S. patients were prescribed these drugs under an emergency use authorization. Further research involving larger numbers of patients has cast serious doubts on these claims, however.
    With so much COVID-related information being released each week, how can researchers, clinicians and policymakers keep up?
    In a commentary published this week in Nature Biotechnology, University of New Mexico scientist Tudor Oprea, MD, PhD, and his colleagues, many of whom work at artificial intelligence (AI) companies, make the case that AI and machine learning have the potential to help researchers separate the wheat from the chaff.
    Oprea, professor of Medicine and Pharmaceutical Sciences and chief of the UNM Division of Translational Informatics, notes that the sense of urgency to develop a vaccine and devise effective treatments for the coronavirus has led many scientists to bypass the traditional peer review process by publishing “preprints” — preliminary versions of their work — online.
    While that enables rapid dissemination of new findings, “The problem comes when claims about certain drugs that have not been experimentally validated appear in the preprint world,” Oprea says. Among other things, bad information may lead scientists and clinicians to waste time and money chasing blind leads.
    AI and machine learning can harness massive computing power to check many of the claims that are being made in a research paper, the suggest the authors, a group of public and private-sector researchers from the U.S., Sweden, Denmark, Israel, France, the United Kingdom, Hong Kong, Italy and China led by Jeremy Levin, chair of the Biotechnology Innovation Organization, and Alex Zhavoronkov, CEO of InSilico Medicine.
    “I think there is tremendous potential there,” Oprea says. “I think we are on the cusp of developing tools that will assist with the peer review process.”
    Although the tools are not fully developed, “We’re getting really, really close to enabling automated systems to digest tons of publications and look for discrepancies,” he says. “I am not aware of any such system that is currently in place, but we’re suggesting with adequate funding this can become available.”
    Text mining, in which a computer combs through millions of pages of text looking for specified patterns, has already been “tremendously helpful,” Oprea says. “We’re making progress in that.”
    Since the COVID epidemic took hold, Oprea himself has used advanced computational methods to help identify existing drugs with potential antiviral activity, culled from a library of thousands of candidates.
    “We’re not saying we have a cure for peer review deficiency, but we are saying that that a cure is within reach, and we can improve the way the system is currently implemented,” he says. “As soon as next year we may be able to process a lot of these data and serve as additional resources to support the peer review process.” More

  • in

    Shining a light on disordered and fractal systems

    Researchers led by the University of Tsukuba studied the vibrational modes of an intrinsically disordered protein to understand its anomalously strong response at low frequencies. This work may lead to improvements in our knowledge of materials that lack long-range order, which may influence industrial glass manufacturing.
    Glassy materials have many surprising properties. Not quite a solid or a liquid, glasses are made of atoms that are frozen in a disordered, non-crystalline state. Over a century ago, physicist Peter Debye proposed a formula for understanding the possible vibrational modes of solids. While mostly successful, this theory does not explain the surprisingly universal vibrations that can be excited in disordered materials — like glass — by electromagnetic radiation in the terahertz range. This deviation has been seen often enough to gets its own name, the “boson peak,” but its origin remains unclear.
    Now, researchers at the University of Tsukuba have conducted a series of experiments to investigate the physics behind the boson peak using the protein lysozyme. “This protein has an intrinsically disordered and fractal structure,” first author of the study Professor Tatsuya Mori says. “We believe that it makes sense to consider the entire system as a single supramolecule.”
    Fractals, which are mathematical structures that exhibit self-similarity over a wide range of scales, are common in nature. Think of trees: they appear similar whether you zoom out to look at the branches, as well as when you come close to inspect the twigs. Fractals have the surprising ability to be described by a non-integer number of dimensions. That is, an object with a fractal dimension of 1.5 is halfway between a two-dimensional and a three-dimensional object, which means that its mass increases with its size to the 1.5 power.
    On the basis of the results of terahertz spectroscopy, the mass fractal dimension of the lysozyme molecules was found to be around 2.75. This value was also determined to be related to the absorption coefficient of the material.
    “The findings suggest that the fractal properties originate from the self-similarity of the structure of the amino acids of the lysozyme proteins,” Professor Mori says. “This research may hold the key to resolving a long-standing puzzle regarding disordered and fractal materials, which can lead to more efficient production of glass or fractal structures.”

    Story Source:
    Materials provided by University of Tsukuba. Note: Content may be edited for style and length. More

  • in

    Virtual reality trains public to reverse opioid overdoses

    The United States has seen a 200% increase in the rate of deaths by opioid overdose in the last 20 years. But many of these deaths were preventable. Naloxone, also called Narcan, is a prescription drug that reverses opioid overdoses, and in more than 40 states — including Pennsylvania — there is a standing order policy, which makes it available to anyone, without an individual prescription from a healthcare provider.
    Members of the public can carry naloxone in case they encounter a person experiencing an opioid overdose. But how do you know if someone needs naloxone and how do you administer it? Health care providers are often trained to respond in these types of situations, and prior to the onset of COVID-19, public health organizations were offering in-person trainings to the public.
    But how do we get even more people trained and motivated to save lives from opioid overdoses, especially in our current socially distanced world?
    A group of interdisciplinary researchers from the University of Pennsylvania and the Philadelphia Department of Public Heath developed a virtual reality immersive video training aimed at doing just that. Their new study — published recently in Drug and Alcohol Prevention — shows that the VR training is just as effective as an in-person training at giving the public both the knowledge and the confidence they need to administer naloxone and save lives.
    “Overdoses aren’t happening in hospitals and doctor’s offices,” says Nicholas Giordano, former Lecturer at Penn’s School of Nursing. “They’re happening in our communities: in parks, libraries, and even in our own homes. It’s crucial that we get the ability to save lives into the hands of the people on the front lines in close proximity to individuals at risk of overdose.”
    The researchers adapted a 60 minute in-person training, the educational standard for health care providers, into a 9-minute immersive virtual reality video. Then the interdisciplinary team tested the VR training on members of the public at free naloxone giveaways and training clinics hosted by the Philadelphia Department of Health at local libraries. (The clinics were held in 2019 and early 2020, before the coronavirus pandemic made such events unsafe.)
    Roughly a third of the 94 participants received one-on-one in-person instruction on how to administer naloxone, while the others watched the experimental VR training. After the initial training, participants answered questions about the training to determine if they’d learned enough information to safely administer naloxone in the case of an opioid overdose.
    Before leaving the library, all participants were given the opportunity to receive whichever training they didn’t receive initially. Since the VR training was still in testing mode, the researchers wanted to ensure that all participants had full access to what they came for: knowledge of how to save lives.
    “We were really pleased to discover that our VR training works just as well as an in-person training,” says Natalie Herbert, a 2020 graduate of Penn’s Annenberg School for Communication. “We weren’t looking to replace the trainings public health organizations are already offering; rather, we were hoping to offer an alternative for folks who can’t get to an in-person training, but still want the knowledge. And we’re excited to be able to do that.”
    In addition to continuing to test their VR training, the researchers plan to begin making it available to the general public through partnerships with libraries, public health organizations, and other local stakeholders. With grant support from the Independence Blue Cross Foundation, the team will be disseminating and promoting the VR training throughout the Greater Philadelphia Area. Now, more than ever, the portability and immersive aspects of this VR raining can be leveraged to expand access to overdose training. For more information on how to experience the VR training, which can be used at home through Google Cardboard or other VR viewers, visit their website: https://www.virtualinnovation.org. More

  • in

    Infinite chains of hydrogen atoms have surprising properties, including a metallic phase

    An infinite chain of hydrogen atoms is just about the simplest bulk material imaginable — a never-ending single-file line of protons surrounded by electrons. Yet a new computational study combining four cutting-edge methods finds that the modest material boasts fantastic and surprising quantum properties.
    By computing the consequences of changing the spacing between the atoms, an international team of researchers from the Flatiron Institute and the Simons Collaboration on the Many Electron Problem found that the hydrogen chain’s properties can be varied in unexpected and drastic ways. That includes the chain transforming from a magnetic insulator into a metal, the researchers report September 14 in Physical Review X.
    The computational methods used in the study present a significant step toward custom-designing materials with sought-after properties, such as the possibility of high-temperature superconductivity in which electrons flow freely through a material without losing energy, says the study’s senior author Shiwei Zhang. Zhang is a senior research scientist at the Center for Computational Quantum Physics (CCQ) at the Simons Foundation’s Flatiron Institute in New York City.
    “The main purpose was to apply our tools to a realistic situation,” Zhang says. “Almost as a side product, we discovered all of this interesting physics of the hydrogen chain. We didn’t think that it would be as rich as it turned out to be.”
    Zhang, who is also a chancellor professor of physics at the College of William and Mary, co-led the research with Mario Motta of IBM Quantum. Motta serves as first author of the paper alongside Claudio Genovese of the International School for Advanced Studies (SISSA) in Italy, Fengjie Ma of Beijing Normal University, Zhi-Hao Cui of the California Institute of Technology, and Randy Sawaya of the University of California, Irvine. Additional co-authors include CCQ co-director Andrew Millis, CCQ Flatiron Research Fellow Hao Shi and CCQ research scientist Miles Stoudenmire.
    The paper’s long author list — 17 co-authors in total — is uncommon for the field, Zhang says. Methods are often developed within individual research groups. The new study brings many methods and research groups together to combine forces and tackle a particularly thorny problem. “The next step in the field is to move toward more realistic problems,” says Zhang, “and there is no shortage of these problems that require collaboration.”
    While conventional methods can explain the properties of some materials, other materials, such as infinite hydrogen chains, pose a more daunting computational hurdle. That’s because the behavior of the electrons in those materials is heavily influenced by interactions between electrons. As electrons interact, they become quantum-mechanically entangled with one another. Once entangled, the electrons can no longer be treated individually, even when they are physically separate.

    advertisement

    The sheer number of electrons in a bulk material — roughly 100 billion trillion per gram — means that conventional brute force methods can’t even come close to providing a solution. The number of electrons is so large that it’s practically infinite when thinking at the quantum scale.
    Thankfully, quantum physicists have developed clever methods of tackling this many-electron problem. The new study combines four such methods: variational Monte Carlo, lattice-regularized diffusion Monte Carlo, auxiliary-field quantum Monte Carlo, and standard and sliced-basis density-matrix renormalization group. Each of these cutting-edge methods has its strengths and weaknesses. Using them in parallel and in concert provides a fuller picture, Zhang says.
    Researchers, including authors of the new study, previously used those methods in 2017 to compute the amount of energy each atom in a hydrogen chain has as a function of the chain’s spacing. This computation, known as the equation of state, doesn’t provide a complete picture of the chain’s properties. By further honing their methods, the researchers did just that.
    At large separations, the researchers found that the electrons remain confined to their respective protons. Even at such large distances, the electrons still ‘know’ about each other and become entangled. Because the electrons can’t hop from atom to atom as easily, the chain acts as an electrical insulator.
    As the atoms move closer together, the electrons try to form molecules of two hydrogen atoms each. Because the protons are fixed in place, these molecules can’t form. Instead, the electrons ‘wave’ to one another, as Zhang puts it. Electrons will lean toward an adjacent atom. In this phase, if you find an electron leaning toward one of its neighbors, you’ll find that neighboring electron responding in return. This pattern of pairs of electrons leaning toward each other will continue in both directions.

    advertisement

    Moving the hydrogen atoms even closer together, the researchers discovered that the hydrogen chain transformed from an insulator into a metal with electrons moving freely between atoms. Under a simple model of interacting particles known as the one-dimensional Hubbard model, this transition shouldn’t happen, as electrons should electrically repel each other enough to restrict movement. In the 1960s, British physicist Nevill Mott predicted the existence of an insulator-to-metal transition based on a mechanism involving so-called excitons, each consisting of an electron trying to break free of its atom and the hole it leaves behind. Mott proposed an abrupt transition driven by the breakup of these excitons — something the new hydrogen chain study didn’t see.
    Instead, the researchers discovered a more nuanced insulator-to-metal transition. As the atoms move closer together, electrons gradually get peeled off the tightly bound inner core around the proton line and become a thin `vapor’ only loosely bound to the line and displaying interesting magnetic structures.
    The infinite hydrogen chain will be a key benchmark in the future in the development of computational methods, Zhang says. Scientists can model the chain using their methods and check their results for accuracy and efficiency against the new study.
    The new work is a leap forward in the quest to utilize computational methods to model realistic materials, the researchers say. In the 1960s, British physicist Neil Ashcroft proposed that metallic hydrogen, for instance, might be a high-temperature superconductor. While the one-dimensional hydrogen chain doesn’t exist in nature (it would crumple into a three-dimensional structure), the researchers say that the lessons they learned are a crucial step forward in the development of the methods and physical understanding needed to tackle even more realistic materials. More

  • in

    Light processing improves robotic sensing, study finds

    A team of Army researchers uncovered how the human brain processes bright and contrasting light, which they say is a key to improving robotic sensing and enabling autonomous agents to team with humans.
    To enable developments in autonomy, a top Army priority, machine sensing must be resilient across changing environments, researchers said.
    “When we develop machine vision algorithms, real-world images are usually compressed to a narrower range, as a cellphone camera does, in a process called tone mapping,” said Andre Harrison, a researcher at the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory. “This can contribute to the brittleness of machine vision algorithms because they are based on artificial images that don’t quite match the patterns we see in the real world.”
    By developing a new system with 100,000-to-1 display capability, the team discovered the brain’s computations, under more real-world conditions, so they could build biological resilience into sensors, Harrison said.
    Current vision algorithms are based on human and animal studies with computer monitors, which have a limited range in luminance of about 100-to-1, the ratio between the brightest and darkest pixels. In the real world, that variation could be a ratio of 100,000-to-1, a condition called high dynamic range, or HDR.
    “Changes and significant variations in light can challenge Army systems — drones flying under a forest canopy could be confused by reflectance changes when wind blows through the leaves, or autonomous vehicles driving on rough terrain might not recognize potholes or other obstacles because the lighting conditions are slightly different from those on which their vision algorithms were trained,” said Army researcher Dr. Chou Po Hung.

    advertisement

    The research team sought to understand how the brain automatically takes the 100,000-to-1 input from the real world and compresses it to a narrower range, which enables humans to interpret shape. The team studied early visual processing under HDR, examining how simple features like HDR luminance and edges interact, as a way to uncover the underlying brain mechanisms.
    “The brain has more than 30 visual areas, and we still have only a rudimentary understanding of how these areas process the eye’s image into an understanding of 3D shape,” Hung said. “Our results with HDR luminance studies, based on human behavior and scalp recordings, show just how little we truly know about how to bridge the gap from laboratory to real-world environments. But, these findings break us out of that box, showing that our previous assumptions from standard computer monitors have limited ability to generalize to the real world, and they reveal principles that can guide our modeling toward the correct mechanisms.”
    The Journal of Vision published the team’s research findings, Abrupt darkening under high dynamic range (HDR) luminance invokes facilitation for high contrast targets and grouping by luminance similarity.
    Researchers said the discovery of how light and contrast edges interact in the brain’s visual representation will help improve the effectiveness of algorithms for reconstructing the true 3D world under real-world luminance, by correcting for ambiguities that are unavoidable when estimating 3D shape from 2D information.
    “Through millions of years of evolution, our brains have evolved effective shortcuts for reconstructing 3D from 2D information,” Hung said. “It’s a decades-old problem that continues to challenge machine vision scientists, even with the recent advances in AI.”
    In addition to vision for autonomy, this discovery will also be helpful to develop other AI-enabled devices such as radar and remote speech understanding that depend on sensing across wide dynamic ranges.
    With their results, the researchers are working with partners in academia to develop computational models, specifically with spiking neurons that may have advantages for both HDR computation and for more power-efficient vision processing — both important considerations for low-powered drones.
    “The issue of dynamic range is not just a sensing problem,” Hung said. “It may also be a more general problem in brain computation because individual neurons have tens of thousands of inputs. How do you build algorithms and architectures that can listen to the right inputs across different contexts? We hope that, by working on this problem at a sensory level, we can confirm that we are on the right track, so that we can have the right tools when we build more complex AIs.” More

  • in

    Fast and efficient method to produce red blood cells developed

    Researchers from Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, have discovered a new way to manufacture human red blood cells (RBCs) that cuts the culture time by half compared to existing methods and uses novel sorting and purification methods that are faster, more precise and less costly.
    Blood transfusions save millions of lives every year, but over half the world’s countries do not have sufficient blood supply to meet their needs. The ability to manufacture RBCs on demand, especially the universal donor blood (O+), would significantly benefit those in need of transfusion for conditions like leukemia by circumventing the need for large volume blood draws and difficult cell isolation processes.
    Easier and faster manufacturing of RBCs would also have a significant impact on blood banks worldwide and reduce dependence on donor blood which has a higher risk of infection. It is also critical for disease research such as malaria which affects over 220 million people annually, and can even enable new and improved cell therapies.
    However, manufacturing RBCs is time-consuming and creates undesirable by-products, with current purification methods being costly and not optimal for large scale therapeutic applications. SMART’s researchers have thus designed an optimised intermediary cryogenic storage protocol that reduces the cell culture time to 11 days post-thaw, eliminating the need for continuous 23-day blood manufacturing. This is aided by complementary technologies the team developed for highly efficient, low-cost RBC purification and more targeted sorting.
    In a paper titled “Microfluidic label-free bioprocessing of human reticulocytes from erythroid culture” recently published in the journal Lab on a Chip, the researchers explain the huge technical advancements they have made towards improving RBC manufacturing. The study was carried out by researchers from two of SMART’s Interdisciplinary Research Groups (IRGs) — Antimicrobial Resistance (AMR) and Critical Analytics for Manufacturing Personalised-Medicine (CAMP) — co-led by Principal Investigators Jongyoon Han, a Professor at MIT, and Peter Preiser, a Professor at NTU. The team also included AMR and CAMP IRG faculty appointed at the National University of Singapore (NUS) and Nanyang Technological University (NTU).
    “Traditional methods for producing human RBCs usually require 23 days for the cells to grow, expand exponentially and finally mature into RBCs,” says Dr Kerwin Kwek, lead author of the paper and Senior Postdoctoral Associate at SMART CAMP. “Our optimised protocol stores the cultured cells in liquid nitrogen on what would normally be Day 12 in the typical process, and upon demand thaws the cells and produces the RBCs within 11 days.”
    The researchers also developed novel purification and sorting methods by modifying existing Dean Flow Fractionation (DFF) and Deterministic Lateral Displacement (DLD); developing a trapezoidal cross-section design and microfluidic chip for DFF sorting, and a unique sorting system achieved with an inverse L-shape pillar structure for DLD sorting.
    SMART’s new sorting and purification techniques using the modified DFF and DLD methods leverage the RBC’s size and deformability for purification instead of spherical size. As most human cells are deformable, this technique can have wide biological and clinical applications such as cancer cell and immune cell sorting and diagnostics.
    On testing the purified RBCs, they were found to retain their cellular functionality, as demonstrated by high malaria parasite infectivity which requires highly pure and healthy cells for infection. This confirms SMART’s new RBC sorting and purifying technologies are ideal for investigating malaria pathology.
    Compared with conventional cell purification by fluorescence-activated cell sorting (FACS), SMART’s enhanced DFF and DLD methods offer comparable purity while processing at least twice as many cells per second at less than a third of the cost. In scale-up manufacturing processes, DFF is more optimal for its high volumetric throughput, whereas in cases where cell purity is pivotal, DLD’s high precision feature is most advantageous.
    “Our novel sorting and purification methods result in significantly faster cell processing time and can be easily integrated into current cell manufacturing processes. The process also does not require a trained technician to perform sample handling procedures and is scalable for industrial production,” Dr Kwek continues.
    The results of their research would give scientists faster access to final cell products that are fully functional with high purity at a reduced cost of production. More