More stories

  • in

    Three things to know about the disastrous flood in India

    A flash flood surged down a river in India’s Himalayan Uttarakhand state on February 7, killing at least 30 people and washing away two hydroelectric power stations.
    As rescue workers search for more than 100 people who are still missing, officials and scientists are trying to unravel the causes of the sudden flood. Did a glacier high up in the mountains collapse, releasing a huge plug of frigid meltwater that spilled into the river? Or was the culprit a landslide that then triggered an avalanche? And what, if any, link might these events have to a changing climate?
    Here are three things to know about what might have caused the disaster in Uttarakhand.
    1. One possible culprit was the sudden break of a glacier high in the mountains.
    News reports in the immediate wake of the disaster suggested that the floodwaters were caused by the sudden overflow of a glacial lake high up in the mountain, an event called a glacial lake outburst flood.
    “It’s likely too early to know what exactly happened,” says Anjal Prakash, the research director of the Bharti Institute of Public Policy at the Indian School of Business in Hyderabad. Satellite images show that a section of a glacier broke off, but how that break relates to the subsequent floods is still unknown. One possibility is that the glacier was holding back a lake of meltwater, and that heavy snowfall in the region two days earlier added enough volume to the lake that the water forced its way out, breaking the glacier and surging into nearby rivers.
    This scenario is certainly in line with known hazards for the region. “These mountains are very fragile,” says Prakash, who was also a lead author on the Intergovernmental Panel on Climate Change’s 2019 special report on oceans and the cryosphere, Earth’s icy places. But, he notes, there isn’t yet much on-the-ground data to help clarify events. “The efforts are still focused on relief at the moment.”
    2. A landslide may be to blame instead.
    Other researchers contend that the disaster wasn’t caused by a glacial lake outburst flood at all. Instead, says Daniel Shugar, a geomorphologist at the University of Calgary in Canada, satellite images snapped during the disaster show the telltale marks of a landslide: a dark scar snaking through the white snow and clouds of dust clogging the air above. “You could see this train of dust in the valley, and that’s common for a very large landslide,” Shugar says.
    “WOW,” he wrote on Twitter the morning of February 7, posting side-by-side satellite shots of a dark area of possible “massive dust deposition,” contrasted against the same snowy, pristine region just the day before.

    Landslides — the sudden failure of a slope, sending a rush of rocks and sediment downhill — can be triggered by anything from an earthquake to an intense deluge of rain. In high, snowy mountains, cycles of freezing and thawing and refreezing again can also begin to break the ground apart; the ice-filled cracks can slowly widen over time, setting the stage for sudden failure, and then, disaster.
    The satellite images seem to point clearly to such a landslide, rather than a typical glacial lake overflow, Shugar says. The force of the landslide may have actually broken off that piece of hanging glacier, he says. Another line of evidence against a sudden lake burst is that “there were no lakes of any size visible” in the satellite images taken over the region.
    However, an outlying question for this hypothesis is where the floodwaters came from. It might be that one of the rivers draining down the mountain was briefly dammed by the rockfall; a sudden release of that dam could send a large plug of water from the river swiftly and disastrously downhill. “But that’s a pure guess at the moment,” Shugar says.
    3. It’s not yet clear whether climate change played a role in the disaster.
    The risk of both glacial lake outburst floods and freeze-thaw-related landslides in Asia’s high mountains has increased due to climate change. At first glance, “it was a climate event,” Prakash says. “But the data are still coming.”
    The region, which includes the Hindu Kush Himalayan mountains and the Tibetan Plateau, “has been a climate change hot spot for a pretty long time,” Prakash says. The region is often called Earth’s third pole, because the stores of ice and snow in the Himalayan watershed amount to the largest reserves of freshwater outside of the polar regions. The region is the source of 10 major river systems that provide water to almost 2 billion people.
    Climate change reports have warned that warming is not only threatening this water supply, but also increasing the likelihood of natural hazards (SN: 5/29/19). In the Intergovernmental Panel on Climate Change’s 2019 special report on oceans and the cryosphere, scientists noted that glacier retreat, melting snow and thawing permafrost are making mountain slopes more unstable and also increasing the number of glacial lakes, upping the likelihood of a sudden, catastrophic failure (SN: 9/25/19).
    A 2019 comprehensive assessment focusing on climate change’s impacts in Asia’s high mountains found that the glaciers in the region have retreated much more quickly in the last decade than was anticipated, Prakash says, “and that is alarming for us.” Here’s another way to look at it: Glaciers are retreating twice as fast as they were at the end of the 20th century (SN: 6/19/19).
    Glacier-related landslides in the region have also become increasingly common in the last decade, as the region warms and destabilizing freeze-thaw cycles within the ground occur higher and higher up on the slopes.
    But in the case of this particular disaster, Shugar says, it’s just hard to say conclusively at this point what role climate change might have played, or even what specific event might have triggered a landslide. “Sometimes there is no trigger; sometimes it’s just time,” he says. “Or it’s that we just don’t understand the trigger.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox More

  • in

    Ship exhaust studies overestimate cooling from pollution-altered clouds

    Among the biggest questions for climate change forecasters is how atmospheric aerosols shape clouds, which can help cool the planet. Now, a new study finds that one promising strategy for understanding how aerosols and clouds interact can overestimate the cooling ability of pollution-generated clouds by up to 200 percent, researchers report in the Jan. 29 Science.
    “Clouds in general, and how aerosols interact with the climate, are a big uncertainty in climate models,” says Franziska Glassmeier, an atmospheric scientist at Delft University of Technology in the Netherlands. Scientists know that aerosols — both natural, as from volcanoes, and human-caused, as from pollution — can change a cloud’s thickness, ability to scatter sunlight or how much rainfall it produces. But these complicated physical effects are difficult to simulate, so scientists have sought real-world examples to study these effects.
    Enter ship tracks. Exhaust belched out of massive cargo ships crossing the oceans can form these bright lines of clouds. The tiny exhaust particles act as cloud nuclei: Water vapor condenses on the particles to form cloud droplets, the watery stuff of clouds. Ship tracks are “this prime example where we can see this cause and effect,” Glassmeier says. “Put in particles, and you can see the clouds get brighter.” Brighter clouds means that they are reflecting even more sunlight back into space.
    Visible and measurable by satellite, the tracks offer a potential window into how larger-scale industrial pollution around the globe might be altering the planet’s cloudscape — and perhaps how such clouds might affect the climate. Satellite-derived analyses of ship tracks involve measuring the density of the water droplets in the clouds from the images, and calculating how the brightness of the clouds changes over time.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    To assess how well ship tracks actually represent the overall impact of pollution on clouds, Glassmeier and her colleagues compared the cooling effect of ship track clouds with that of simulated pollution-derived clouds, such as might occur over a city. In particular, the researchers wanted to simulate how both the thickness and the brightness of the clouds — and therefore their cooling effect — might evolve over time, as a result of processes like rainfall and evaporation.
    The problem, the team found, is that the ship tracks don’t tell the whole story. Ship tracks are short-lived, because the source of pollution is always on the move. But industrial pollution doesn’t tend to happen in a brief pulse: Instead, there is a steady influx of particles to the atmosphere. And that difference in inputs affects how natural clouds respond over time.
    In both the ship track studies and the simulations of industrial pollution, clouds initially brighten and produce a cooling effect. That’s because, in both cases, the addition of abundant aerosol particles to the atmosphere gives water vapor numerous surfaces on which to condense, creating many small water droplets that form this brighter cloud and reflect incoming radiation.
    After a few hours, however, as a ship moves on, the ship track goes away, and the pulse of pollution ceases, Glassmeier says. The initial brief bit of cooling subsides as the preexisting natural clouds return to their original, nonpolluted state.
    But in the case of industrial pollutants, the natural clouds don’t return to their original state, the simulations show. Rather, the pollutants hasten the clouds’ demise. That’s because the tinier aerosol-seeded droplets begin to evaporate more quickly than larger, natural cloud droplets would. This increased evaporation thins the original cloud, allowing more heat through than if the pollutants never arrived. And that can ultimately have an overall warming, rather than cooling, effect on the climate, the team says.
    “There is this timescale effect that needs to be taken into account,” Glassmeier says. Relying solely on ship track data to understand all sources of pollution misses this gradual thinning effect. “I wouldn’t throw all the ship track data away; we just need to interpret it in a new way.” Current climate models tend to omit this thinning effect, she says.
    The new study is “really useful for helping to interpret aerosol-cloud relationships in satellite data,” says Edward Gryspeerdt, an atmospheric physicist at Imperial College London who was not involved in the study. It “demonstrates that the cloud response to aerosols is not instant, but evolves over time.”
    Scientists have been aware that ship tracks may not lead to cooling, says Graeme Stephens, an atmospheric scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. For example, Stephens notes that he and others have previously found that ship tracks can speed up cloud thinning by increasing the rate of evaporation at the tops of the clouds, while at the same time suppressing rainfall, which maintains some of the cloud’s thickness. These two competing responses make determining a cloud’s ultimate fate tricky.
    But what ship tracks can do is act as “a controlled laboratory of sorts,” Stephens says. They “offer us a way to examine aerosol influences on clouds in a direct, concrete way.” More

  • in

    Some bacteria are suffocating sea stars, turning the animals to goo

    The mysterious culprit behind a deadly sea star disease is not an infection, as scientists once thought.
    Instead, multiple types of bacteria living within millimeters of sea stars’ skin deplete oxygen from the water and effectively suffocate the animals, researchers report January 6 in Frontiers in Microbiology. Such microbes thrive when there are high levels of organic matter in warm water and create a low oxygen environment that can make sea stars melt in a puddle of slime.
    Sea star wasting disease — which causes lethal symptoms like decaying tissue and loss of limbs — first gained notoriety in 2013 when sea stars living off the U.S. Pacific Coast died in massive numbers. Outbreaks of the disease had also occurred before 2013, but never at such a large scale.
    Scientists suspected that a virus or bacterium might be making sea stars sick. That hypothesis was supported in a 2014 study that found unhealthy animals may have been infected by a virus (SN: 11/19/14). But the link vanished when subsequent studies found no relationship between the virus and dying sea stars, leaving researchers perplexed (SN: 5/5/16). 

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    The new finding that a boom of nutrient-loving bacteria can drain oxygen from the water and cause wasting disease “challenges us to think that there might not always be a single pathogen or a smoking gun,” says Melissa Pespeni, a biologist at the University of Vermont in Burlington who was not involved in the work. Such a complex environmental scenario for killing sea stars “is a new kind of idea for [disease] transmission.”  
    There were certainly many red herrings during the hunt for why sea stars along North America’s Pacific Coast were melting into goo, says Ian Hewson, a marine biologist at Cornell University. In addition to the original hypothesis of a viral cause for sea star wasting disease — which Hewson’s team reported in 2014 in Proceedings of the National Academy of Sciences but later disproved — he and colleagues analyzed a range of other explanations, from differences in water temperature to exposing the animals to bacteria. But nothing reliably triggered wasting.   
    Then the researchers examined the types of bacteria living with healthy sea stars compared with those living among the animals with wasting disease. “That was when we had our aha moment,” says Hewson.
    Not all sea stars are susceptible to sea star wasting disease. Species that have more structures on their surface, and therefore more surface area for bacteria to deplete oxygen, appear more likely to get severely sick compared with flatter sea stars. In this photo, an ochre sea star (Pisaster ochraceus) succumbs to the disease in Davenport, Calif., in June 2018.Ian Hewson
    Types of bacteria known as copiotrophs, which thrive in environments with lots of nutrients, were present around the sea stars at higher levels than normal either shortly before the animals developed lesions or as they did so, Hewson and colleagues found. Bacterial species that survive only in environments with little to no oxygen were also thriving. In the lab, the sea stars began wasting when the researchers added phytoplankton or a common bacterial-growth ingredient to the warm water tubs those microbes and sea stars were living in.  
    Experimentally depleting oxygen from the water had a similar effect, causing lesions in 75 percent of the animals, while none succumbed in the control group. Sea stars breathe by diffusing oxygen over small external projections called skin gills, so the lack of oxygen in the wake of flourishing copiotrophs leaves sea stars struggling for air, the data show. It’s unclear how the animals degrade in low oxygen conditions, but it could be due to massive cell death.
    Although the disease isn’t caused by a contagious pathogen, it is transmissible in the sense that dying sea stars generate more organic matter that spur bacteria to grow on healthy animals nearby. “It’s a bit of a snowball effect,” Hewson says.
    The team also analyzed tissues from sea stars that had succumbed in the 2013 mass die-off — which followed a large algal bloom on the U.S. West Coast — to see if such environmental conditions might explain that outbreak. In fast-growing appendages that help them move, the sea stars that perished had high amounts of a form of nitrogen found in low oxygen conditions — a sign that those animals may have died from a lack of oxygen.
    The problem may get worse with climate change, Hewson says. “Warmer waters can’t have as much oxygen [compared with colder water] just by physics alone.” Bacteria, including copiotrophs, also flourish in warm water.  
    But pinpointing the likely cause could help experts better treat sick sea stars in the lab, Hewson says. Some techniques include increasing the oxygen levels in a water tank to make the gas more easily available to sea stars or getting rid of extra organic matter with ultraviolet light or water exchange.
    “There’s still a lot to figure out with this disease, but I think [this new study] gets us a long way to understanding how it comes about,” Pespeni says. More

  • in

    ‘The New Climate War’ exposes tactics of climate change ‘inactivists’

    The New Climate WarMichael E. MannPublic Affairs, $29
    Sometime around the fifth century B.C., the Chinese general and military strategist Sun Tzu wrote in his highly quotable treatise The Art of War, “If you know the enemy and know yourself, you need not fear the result of a hundred battles.”
    In The New Climate War, climate scientist Michael Mann channels Sun Tzu to demystify the myriad tactics of “the enemy” — in this case, “the fossil fuel companies, right-wing plutocrats and oil-funded governments” and other forces standing in the way of large-scale action to combat climate change. “Any plan for victory requires recognizing and defeating the tactics now being used by inactivists as they continue to wage war,” he writes.
    Mann is a veteran of the climate wars of the 1990s and early 2000s, when the scientific evidence that the climate is changing due to human emissions of greenhouse gases was under attack. Now, with the effects of climate change all around us (SN: 12/21/20), we are in a new phase of those wars, he argues. Outright denial has morphed into “deception, distraction and delay.”
    Such tactics, he says, are direct descendants of earlier public relations battles over whether producers or consumers must bear ultimate responsibility for, say, smoking-related deaths. When it comes to the climate, Mann warns, an overemphasis on individual actions could eclipse efforts to achieve the real prize: industrial-scale emissions reductions.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    He pulls no punches, calling out sources of “friendly fire” from climate advocates who he says divide the climate community and play into the “enemy’s” hands. These advocates include climate purists who lambaste scientists for flying or eating meat; science communicators who push fatalistic visions of catastrophic futures; and idealistic technocrats who advocate for risky, pie-in-the-sky geoengineering ideas. All, Mann says, distract from what we can do in the here and now: regulate emissions and invest in renewable energy.
    The New Climate War’s main focus is to combat psychological warfare, and on this front, the book is fascinating and often entertaining. It’s an engrossing mix of footnoted history, acerbic political commentary and personal anecdotes. As far as what readers can do to assist in the battle, Mann advocates four strategies: Disregard the doomsayers; get inspired by youth activists like Greta Thunberg; focus on educating the people who will listen; and don’t be fooled into thinking it’s too late to take action to change the political system.
    Buy The New Climate War from Amazon.com. Science News is a participant in the Amazon Services LLC Associates Program. Please see our FAQ for more details. More

  • in

    2020 and 2016 tie for the hottest years on record

    2020 is in a “dead heat” with 2016 for the hottest year on record, scientists with NASA and the National Oceanic and Atmospheric Administration announced January 14.
    Based on ocean temperature data from buoys, floats and ships, as well as temperatures measured over land at weather stations around the globe, the U.S. agencies conducted independent analyses and arrived at a similar conclusion.
    NASA’s analysis showed 2020 to be slightly hotter, while NOAA’s showed that 2016 was still slightly ahead. But the differences in those assessments are within margins of error, “so it’s effectively a statistical tie,” said NASA climatologist Gavin Schmidt of the Goddard Institute for Space Studies in New York City at a Jan. 14 news conference.
    NOAA climate scientist Russell Vose, who is also based in New York City, described in the news conference the extreme warmth that occurred over land last year, including a months-long heat wave in Siberia (SN: 12/21/20). Europe and Asia recorded their hottest average temperatures on record in 2020, with South America recording its second warmest.
    It’s possible that 2020’s temperatures in some areas might have been even higher if not for massive wildfires. Vose noted that smoke lofted high into the stratosphere as a result of Australia’s intense fires in early 2020 may have slightly decreased temperatures in the Northern Hemisphere, though this is not yet known (SN: 12/15/20).
    The ocean-climate pattern known as the El Niño Southern Oscillation can boost or decrease global temperatures, depending on whether it’s in an El Niño or La Niña phase, respectively, Schmidt said (SN: 5/2/16). The El Niño phase was waning at the start of 2020, and a La Niña was starting, so the overall impact of this pattern was muted for the year. 2016, on the other hand, got a large temperature boost from El Niño. Without that, “2020 would have been by far the warmest year on record,” he said.
    But placed in the bigger picture, these rankings “don’t tell the whole story,” Vose said. “The last six to seven years really stand out above the rest of the record, suggesting the kind of rapid warming we’re seeing. [And] each of the past four decades was warmer than the one preceding it.” More

  • in

    Earth’s oceans are storing record-breaking amounts of heat

    Pandemic-related shutdowns may have spared Earth’s atmosphere some greenhouse gas emissions last year, but the world continued to warm.
    Water temperature measurements from around the globe indicate that the total amount of heat stored in the upper oceans in 2020 was higher than any other year on record dating back to 1955, researchers report online January 13 in Advances in Atmospheric Sciences. Tracking ocean temperature is important because warmer water melts more ice off the edges of Greenland and Antarctica, which raises sea levels (SN: 4/30/20) and supercharges tropical storms (SN: 11/11/20).
    Researchers estimated the total heat energy stored in the upper 2,000 meters of Earth’s oceans using temperature data from moored sensors, drifting probes called Argo floats, underwater robots and other instruments (SN: 5/19/10). The team found that upper ocean waters contained 234 sextillion, or 1021, joules more heat energy in 2020 than the annual average from 1981 to 2010. Heat energy storage was up about 20 sextillion joules from 2019 — suggesting that in 2020, Earth’s oceans absorbed about enough heat to boil 1.3 billion kettles of water.
    This analysis may overestimate how much the oceans warmed last year, says study coauthor Kevin Trenberth, a climate scientist with the U.S. National Center for Atmospheric Research who is currently based in Auckland, New Zealand. So the researchers also crunched ocean temperature data using a second, more conservative method for estimating total annual ocean heat and found that the jump from 2019 to 2020 could be as low as 1 sextillion joules. That’s still 65 million kettles brought to boil.
    The three other warmest years on record for the world’s oceans were 2017, 2018 and 2019. “What we’re seeing here is a variant on the movie Groundhog Day,” says study coauthor Michael Mann, a climate scientist at Penn State. “Groundhog Day has a happy ending. This won’t if we don’t act now to dramatically reduce carbon emissions.” More

  • in

    Ocean acidification may make some species glow brighter

    A more acidic ocean could give some species a glow-up.
    As the pH of the ocean decreases as a result of climate change, some bioluminescent organisms might get brighter, while others see their lights dim, scientists report January 2 at the virtual annual meeting of the Society for Integrative and Comparative Biology.
    Bioluminescence is de rigueur in parts of the ocean (SN: 5/19/20). The ability to light the dark has evolved more than 90 times in different species. As a result, the chemical structures that create bioluminescence vary wildly — from single chains of atoms to massive ringed complexes.
    With such variability, changes in pH could have unpredictable effects on creatures’ ability to glow (SN: 7/6/10). If fossil fuel emissions continue as they are, average ocean pH is expected to drop from 8.1 to 7.7 by 2100. To find out how bioluminescence might be affected by that decrease, sensory biologist Tom Iwanicki and colleagues at the University of Hawaii at Manoa gathered 49 studies on bioluminescence across nine different phyla. The team then analyzed data from those studies to see how the brightness of the creatures’ bioluminescent compounds varied at pH levels from 8.1 to 7.7.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    As pH drops, the bioluminescent chemicals in some species, such as the sea pansy (Renilla reniformis), increase light production twofold, the data showed. Other compounds, such as those in the sea firefly (Vargula hilgendorfii), have modest increases of only about 20 percent. And some species, like the firefly squid (Watasenia scintillans), actually appear to have a 70 percent decrease in light production.
    For the sea firefly — which uses glowing trails to attract mates — a small increase could give it a sexy advantage. But for the firefly squid — which also uses luminescence for communication — low pH and less light might not be a good thing.
    Because the work was an analysis of previously published research, “I’m interpreting this as a first step, not a definitive result,” says Karen Chan, a marine biologist at Swarthmore College in Pennsylvania who wasn’t involved in the study. It “provides [a] testable hypothesis that we should … look into.”
    The next step is definitely testing, Iwanicki agrees. Most of the analyzed studies took the luminescing chemicals out of an organism to test them. Finding out how the compounds function in creatures in the ocean will be key. “Throughout our oceans, upward of 75 percent of visible critters are capable of bioluminescence,” Iwanicki says. “When we’re wholescale changing the conditions in which they can use that [ability] … that’ll have a world of impacts.” More