More stories

  • in

    The James Webb telescope spotted the earliest known ‘quenched’ galaxy

    The James Webb Space Telescope has spotted the earliest known galaxy to abruptly stop forming stars.

    The galaxy, called GS-9209, quenched its star formation more than 12.5 billion years ago, researchers report January 26 at arXiv.org. That’s only a little more than a billion years after the Big Bang. Its existence reveals new details about how galaxies live and die across cosmic time.

    “It’s a remarkable discovery,” says astronomer Mauro Giavalisco of the University of Massachusetts Amherst, who was not involved in the new study. “We really want to know when the conditions are ripe to make quenching a widespread phenomenon in the universe.” This study shows that at least some galaxies quenched when the universe was young.

    Science News headlines, in your inbox

    Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.

    Thank you for signing up!

    There was a problem signing you up.

    GS-9209 was first noticed in the early 2000s. In the last few years, observations with ground-based telescopes identified it as a possible quenched galaxy, based on the wavelengths of light it emits. But Earth’s atmosphere absorbs the infrared wavelengths that could confirm the galaxy’s distance and that its star-forming days were behind it, so it was impossible to know for sure.

    So astrophysicist Adam Carnall and colleagues turned to the James Webb Space Telescope, or JWST. The observatory is very sensitive to infrared light, and it’s above the blockade of Earth’s atmosphere (SN: 1/24/22). “This is why JWST exists,” says Carnall, of the University of Edinburgh. JWST also has much greater sensitivity than earlier telescopes, letting it see fainter, more distant galaxies. While the largest telescopes on the ground could maybe see GS-9209 in detail after a month of observing, “JWST can pick this stuff up in a few hours.”

    Using JWST observations, Carnall and colleagues found that GS-9209 formed most of its stars during a 200-million-year period, starting about 600 million years after the Big Bang. In that cosmically brief moment, it built about 40 billion solar masses’ worth of stars, about the same as the Milky Way has.

    That quick construction suggests that GS-9209 formed from a massive cloud of gas and dust collapsing and igniting stars all at once, Carnall says. “It’s pretty clear that the vast majority of the stars that are currently there formed in this big burst.”

    Astronomers used to think this mode of galaxy formation, called monolithic collapse, was the way that most galaxies formed. But the idea has fallen out of favor, replaced by the notion that large galaxies form from the slow merging of many smaller ones (SN: 5/17/21).

    “Now it looks like, at least for this object, monolithic collapse is what happened,” Carnall says. “This is probably the clearest proof yet that that kind of galaxy evolution happens.”

    Subscribe to Science News

    Get great science journalism, from the most trusted source, delivered to your doorstep.

    As to what caused the galaxy’s star-forming frenzy to suddenly stop, the culprit appears to be an actively feeding black hole. The JWST observations detected extra emission of infrared light associated with a rapidly swirling mass of energized hydrogen, which is a sign of an accreting black hole. The black hole appears to be up to a billion times the mass of the sun.

    To reach that mass in less than a billion years after the birth of the universe, the black hole must have been feeding even faster earlier on in its life, Carnall says (SN: 3/16/18). As it gorged, it would have collected a glowing disk of white-hot gas and dust around it.

    “If you have all that radiation spewing out of the black hole, any gas that’s nearby is going to be heated up to an incredible extent, which stops it from falling into stars,” Carnall says.

    More observations with future telescopes, like the planned Extremely Large Telescope in Chile, could help figure out more details about how the galaxy was snuffed out. More

  • in

    The Kuiper Belt’s dwarf planet Quaoar hosts an impossible ring

    The dwarf planet Quaoar has a ring that is too big for its metaphorical fingers. While all other rings in the solar system lie within or near a mathematically determined distance of their parent bodies, Quaoar’s ring is much farther out.

    “For Quaoar, for the ring to be outside this limit is very, very strange,” says astronomer Bruno Morgado of the Federal University of Rio de Janeiro. The finding may force a rethink of the rules governing planetary rings, Morgado and colleagues say in a study published February 8 in Nature.

    Science News headlines, in your inbox

    Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.

    Thank you for signing up!

    There was a problem signing you up.

    Quaoar is an icy body about half the size of Pluto that’s located in the Kuiper Belt at the solar system’s edge (SN: 8/23/22). At such a great distance from Earth, it’s hard to get a clear picture of the world.

    So Morgado and colleagues watched Quaoar block the light from a distant star, a phenomenon called a stellar occultation. The timing of the star winking in and out of view can reveal details about Quaoar, like its size and whether it has an atmosphere.

    The researchers took data from occultations from 2018 to 2020, observed from all over the world, including Namibia, Australia and Grenada, as well as space. There was no sign that Quaoar had an atmosphere. But surprisingly, there was a ring. The finding makes Quaoar just the third dwarf planet or asteroid in the solar system known to have a ring, after the asteroid Chariklo and the dwarf planet Haumea (SN: 3/26/14; SN: 10/11/17).

    Even more surprisingly, “the ring is not where we expect,” Morgado says.

    Known rings around other objects lie within or near what’s called the Roche limit, an invisible line where the gravitational force of the main body peters out. Inside the limit, that force can rip a moon to shreds, turning it into a ring. Outside, the gravity between smaller particles is stronger than that from the main body, and rings will coalesce into one or several moons.

    “We always think of [the Roche limit] as straightforward,” Morgado says. “One side is a moon forming, the other side is a ring stable. And now this limit is not a limit.”

    For Quaoar’s far-out ring, there are a few possible explanations, Morgado says. Maybe the observers caught the ring at just the right moment, right before it turns into a moon. But that lucky timing seems unlikely, he notes.

    Maybe Quaoar’s known moon, Weywot, or some other unseen moon contributes gravity that holds the ring stable somehow. Or maybe the ring’s particles are colliding in such a way that they avoid sticking together and clumping into moons.

    The particles would have to be particularly bouncy for that to work, “like a ring of those bouncy balls from toy stores,” says planetary scientist David Jewitt of UCLA, who was not involved in the new work.

    The observation is solid, says Jewitt, who helped discover the first objects in the Kuiper Belt in the 1990s. But there’s no way to know yet which of the explanations is correct, if any, in part because there are no theoretical predictions for such far-out rings to compare with Quaoar’s situation.

    That’s par for the course when it comes to the Kuiper Belt. “Everything in the Kuiper Belt, basically, has been discovered, not predicted,” Jewitt says. “It’s the opposite of the classical model of science where people predict things and then confirm or reject them. People discover stuff by surprise, and everyone scrambles to explain it.”

    More observations of Quaoar, or more discoveries of seemingly misplaced rings elsewhere in the solar system, could help reveal what’s going on.

    “I have no doubt that in the near future a lot of people will start working with Quaoar to try to get this answer,” Morgado says. More

  • in

    Lots of Tatooine-like planets around binary stars may be habitable

    SEATTLE — Luke Skywalker’s home planet in Star Wars is the stuff of science fiction. But Tatooine-like planets in orbit around pairs of stars might be our best bet in the search for habitable planets beyond our solar system.

    Many stars in the universe come in pairs. And lots of those should have planets orbiting them (SN: 10/25/21). That means there could be many more planets orbiting around binaries than around solitary stars like ours. But until now, no one had a clear idea about whether those planets’ environments could be conducive to life. New computer simulations suggest that, in many cases, life could imitate art.

    Science News headlines, in your inbox

    Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.

    Thank you for signing up!

    There was a problem signing you up.

    Earthlike planets orbiting some configurations of binary stars can stay in stable orbits for at least a billion years, researchers reported January 11 at the American Astronomical Society meeting. That sort of stability, the researchers propose, would be enough to potentially allow life to develop, provided the planets aren’t too hot or cold.

    Of the planets that stuck around, about 15 percent stayed in their habitable zone — a temperate region around their stars where water could stay liquid — most or even all of the time.

    The researchers ran simulations of 4,000 configurations of binary stars, each with an Earthlike planet in orbit around them. The team varied things like the relative masses of the stars, the sizes and shapes of the stars’ orbits around each other, and the size of the planet’s orbit around the binary pair.

    The scientists then tracked the motion of the planets for up to a billion years of simulated time to see if the planets would stay in orbit over the sorts of timescales that might allow life to emerge.

    A planet orbiting binary stars can get kicked out of the star system due to complicated interactions between the planet and stars. In the new study, the researchers found that, for planets with large orbits around star pairs, only about 1 out of 8 were kicked out of the system. The rest were stable enough to continue to orbit for the full billion years. About 1 in 10 settled in their habitable zones and stayed there.

    Of the 4,000 planets that the team simulated, roughly 500 maintained stable orbits that kept them in their habitable zones at least 80 percent of the time.

    “The habitable zone . . . as I’ve characterized it so far, spans from freezing to boiling,” said Michael Pedowitz, an undergraduate student at the College of New Jersey in Ewing who presented the research. Their definition is overly strict, he said, because they chose to model Earthlike planets without atmospheres or oceans. That’s simpler to simulate, but it also allows temperatures to fluctuate wildly on a planet as it orbits.

    Subscribe to Science News

    Get great science journalism, from the most trusted source, delivered to your doorstep.

    “An atmosphere and oceans would smooth over temperature variations fairly well,” says study coauthor Mariah MacDonald, an astrobiologist also at the College of New Jersey. An abundance of air and water would potentially allow a planet to maintain habitable conditions, even if it spent more of its time outside of the nominal habitable zone around a binary star system.

    The number of potentially habitable planets “will increase once we add atmospheres,” MacDonald says, “but I can’t yet say by how much.”

    She and Pedowitz hope to build more sophisticated models in the coming months, as well as extend their simulations beyond a billion years and include changes in the stars that can affect conditions in a solar system as it ages.

    The possibility of stable and habitable planets in binary star systems is a timely issue says Penn State astrophysicist Jason Wright, who was not involved in the study.

    “At the time Star Wars came out,” he says, “we didn’t know of any planets outside the solar system, and wouldn’t for 15 years. Now we know that there are many and that they orbit these binary stars.”

    These simulations of planets orbiting binaries could serve as a guide for future experiments, Wright says. “This is an under-explored population of planets. There’s no reason we can’t go after them, and studies like this are presumably showing us that it’s worthwhile to try.” More

  • in

    New data show how quickly light pollution is obscuring the night sky

    The night sky has been brightening faster than researchers realized, thanks to the use of artificial lights at night. A study of more than 50,000 observations of stars by citizen scientists reveals that the night sky grew about 10 percent brighter, on average, every year from 2011 to 2022.

    In other words, a baby born in a region where roughly 250 stars were visible every night would see only 100 stars on their 18th birthday, researchers report in the Jan. 20 Science.

    Science News headlines, in your inbox

    Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.

    Thank you for signing up!

    There was a problem signing you up.

    The perils of light pollution go far beyond not being able to see as many stars. Too much brightness at night can harm people’s health, send migrating birds flying into buildings, disrupt food webs by drawing pollinating insects toward lights instead of plants and may even interrupt fireflies trying to have sex (SN: 8/2/17; SN: 8/12/15).

    “In a way, this is a call to action,” says astronomer Connie Walker of the National Optical-Infrared Astronomy Research Laboratory in Tucson. “People should consider that this does have an impact on our lives. It’s not just astronomy. It impacts our health. It impacts other animals who cannot speak for themselves.”

    Walker works with the Globe at Night campaign, which began in the mid-2000s as an outreach project to connect students in Arizona and Chile and now has thousands of participants worldwide. Contributors compare the stars they can see with maps of what stars would be visible at different levels of light pollution, and enter the results on an app.

    “I’d been quite skeptical of Globe at Night” as a tool for precision research, admits physicist Christopher Kyba of the GFZ German Research Centre for Geosciences in Potsdam. But the power is in the sheer numbers: Kyba and colleagues analyzed 51,351 individual data points collected from 2011 to 2022.

    “The individual data are not precise, but there’s a whole lot of them,” he says. “This Globe at Night project is not just a game; it’s really useful data. And the more people participate, the more powerful it gets.”

    Those data, combined with a global atlas of sky luminance published in 2016, allowed the team to conclude that the night sky’s brightness increased by an average 9.6 percent per year from 2011 to 2022 (SN: 6/10/16).

    Most of that increase was missed by satellites that collect brightness data across the globe. Those measurements saw just a 2 percent increase in brightness per year over the last decade.

    Subscribe to Science News

    Get great science journalism, from the most trusted source, delivered to your doorstep.

    There are several reasons for that, Kyba says. Since the early 2010s, many outdoor lights have switched from high-pressure sodium lightbulbs to LEDs. LEDs are more energy efficient, which has environmental benefits and cost savings.

    But LEDs also emit more short-wavelength blue light, which scatters off particles in the atmosphere more than sodium bulbs’ orange light, creating more sky glow. Existing satellites are not sensitive to blue wavelengths, so they underestimate the light pollution coming from LEDs. And satellites may miss light that shines toward the horizon, such as light emitted by a sign or from a window, rather than straight up or down.

    Satellites have missed some of the light pollution from LEDs, which emit in blue wavelengths. This image from the International Space Station shows LEDs in the center of Milan glowing brighter than the orange lights in the suburbs.Samantha Cristoforetti, NASA, ESA

    Astronomer and light pollution researcher John Barentine was not surprised that satellites underestimated the problem. But “I was still surprised by how much of an underestimate it was,” he says. “This paper is confirming that we’ve been undercounting light pollution in the world.”

    The good news is that no major technological breakthroughs are needed to help fix the problem. Scientists and policy makers just need to convince people to change how they use light at night — easier said than done.

    “People sometimes say light pollution is the easiest pollution to solve, because you just have to turn a switch and it goes away,” Kyba says. “That’s true. But it’s ignoring the social problem — that this overall problem of light pollution is made by billions of individual decisions.”

    Some simple solutions include dimming or turning off lights overnight, especially floodlighting or lights in empty parking lots.

    Kyba shared a story about a church in Slovenia that switched from four 400-watt floodlights to a single 58-watt LED, shining behind a cutout of the church to focus the light on its facade. The result was a 96 percent reduction in energy use and much less wasted light , Kyba reported in the International Journal of Sustainable Lighting in 2018. The church was still lit up, but the grass, trees and sky around it remained dark.

    “If it was possible to replicate that story over and over again throughout our society, it would suggest you could really drastically reduce the light in the sky, still have a lit environment and have better vision and consume a lot less energy,” he says. “This is kind of the dream.”

    Barentine, who leads a private dark-sky consulting firm, thinks widespread awareness of the problem — and subsequent action — could be imminent. For comparison, he points to a highly publicized oil slick fire on the Cuyahoga River, outside of Cleveland, in 1969 that fueled the environmental movement of the 1960s and ’70s, and prompted the U.S. Congress to pass the Clean Water Act.

    “I think we’re on the precipice, maybe, of having the river-on-fire moment for light pollution,” he says. More

  • in

    Enceladus is blanketed in a thick layer of snow

    Saturn’s moon Enceladus is shrouded in a thick layer of snow. In some places, the downy stuff is 700 meters deep, new research suggests.

    “It’s like Buffalo, but worse,” says planetary scientist Emily Martin, referring to the famously snowy city in New York. The snow depth suggests that Enceladus’ dramatic plume may have been more active in the past, Martin and colleagues report in the Mar. 1 Icarus.

    Planetary scientists have been fascinated by Enceladus’ geysers, made up of water vapor and other ingredients, since the Cassini spacecraft spotted them in 2005 (SN: 12/16/22). The spray probably comes from a salty ocean beneath an icy shell.

    Science News headlines, in your inbox

    Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.

    Thank you for signing up!

    There was a problem signing you up.

    Some of that water goes to form one of Saturn’s rings (SN: 5/2/06). But most of it falls back onto the moon’s surface as snow, Martin says. Understanding the properties of that snow — its thickness and how dense and compact it is — could help reveal Enceladus’ history, and lay groundwork for future missions to this moon.

    “If you’re going to land a robot there, you need to understand what it’s going to be landing into,” says Martin, of the National Air and Space Museum in Washington, D.C.

    To figure out how thick Enceladus’ snow is, Martin and colleagues looked to Earth — specifically, Iceland. The island country hosts geological features called pit chains, which are lines of pockmarks in the ground formed when loose rubble such as rocks, ice or snow drains into a crack underneath (SN: 10/23/18). Similar features show up all over the solar system, including Enceladus.

    Pit chain craters in Iceland, like those shown here, helped planetary scientist Emily Martin and colleagues verify that they could measure the depth of craters on Enceladus. Martin took this image during a field excursion.E. Martin

    Previous work suggested a way to use geometry and the angle at which sunlight hits the surface to measure the depth of the pits. That measurement can then reveal the depth of the material the pits sit in. A few weeks of fieldwork in Iceland in 2017 and 2018 convinced Martin and her colleagues that the same technique would work on Enceladus.

    Using images from Cassini, Martin and colleagues found that the snow’s thickness varies across Enceladus’ surface. It is hundreds of meters deep in most places and 700 meters deep at its thickest.

    Subscribe to Science News

    Get great science journalism, from the most trusted source, delivered to your doorstep.

    It’s hard to imagine how all that snow got there, though, Martin says. If the plume’s spray was always what it is today, it would take 4.5 billion years — the entire age of the solar system — to deposit that much snow on the surface. Even then, the snow would have to be especially fluffy.

    It seems unlikely that the plume switched on the moment the moon formed and never changed, Martin says. And even if it did, later layers of snow would have compressed the earlier ones, compacting the whole layer and making it much less deep than it is today.

    “It makes me think we don’t have 4.5 billion years to do this,” Martin says. Instead, the plume might have been much more active in the past. “We need to do it in a much shorter timeframe. You need to crank up the volume on the plume.”

    The technique was clever, says planetary scientist Shannon MacKenzie of the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. Without rovers or astronauts on the ground, there’s no way to scoop up the snow and see how far down it goes. “Instead, the authors are very cleverly using geology to be their rovers, to be their shovels.”

    MacKenzie was not involved in the new work, but she led a mission concept study for an orbiter and lander that could one day visit Enceladus. One of the major questions in that study was where a lander could safely touch down. “Key to those discussions was, what do we expect the surface to be?” she says. The new paper could help “identify the places that are too fluffy to land in.” More

  • in

    The James Webb telescope found ‘Green Pea’ galaxies in the early universe

    Galaxies that helped transform the early universe may have been small, round and green.

    Astronomers using the James Webb Space Telescope have spotted “Green Pea” galaxies dating to 13.1 billion years ago. These viridescent runts, spotted just 700 million years after the Big Bang, might have helped trigger one of the greatest makeovers in cosmic history, astronomers said at a January 9 news conference in Seattle at the American Astronomical Society’s annual meeting.

    Green Peas first showed up in 2009 in images from the Sloan Digital Sky Survey, an ambitious project to map much of the sky. Citizen science volunteers gave the objects their colorful name. Their greenish hue is because most of their light comes from glowing gas clouds, rather than directly from stars.

    Science News headlines, in your inbox

    Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.

    Thank you for signing up!

    There was a problem signing you up.

    These galaxies are rare in the present-day universe. Astronomers think that the ones that do exist are analogs of galaxies that were more plentiful in the early universe.

    “They’re a bit like living fossils,” said astrophysicist James Rhoads of NASA’s Goddard Space Flight Center in Greenbelt, Md. “Coelacanths, if you will,” referencing a fish thought to be extinct until it showed up off the coast of South Africa in 1938 (SN: 12/2/11). 

    These galaxies leak much more ultraviolet light, which can rip electrons from atoms, than typical galaxies do. So Green Peas dating to the universe’s first billion years or so could be partly responsible for a dramatic and mysterious cosmic transition called reionization, when most of the hydrogen atoms in the early universe had their electrons torn away (SN: 1/7/20).

    Three ancient Green Peas turned up in JWST’s first image, released in July 2022 (SN: 7/21/22). The objects look red in JWST’s infrared vision, but the wavelengths of light they emit are like those of the previously discovered Green Peas. The findings were also published in the Jan. 1 Astrophysical Journal Letters.

    “This helps us explain how the universe reionized,” Rhoads said. “I think this is an important piece of the puzzle.” More

  • in

    Methylated gases could be an unambiguous indicator of alien life

    SEATTLE — Attention alien hunters: If you want to find life on distant planets, try looking for signs of toxic chemical cleanup. 

    Gases that organisms produce as they tidy up their environments could provide clear signs of life on planets orbiting other stars, researchers announced January 9 at the American Astronomical Society meeting. All we need to do to find hints of alien life is to look for those gases in the atmospheres of those exoplanets, in images coming from the James Webb Space Telescope or other observatories that could come online soon.

    Science News headlines, in your inbox

    Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.

    Thank you for signing up!

    There was a problem signing you up.

    Barring an interstellar radio broadcast, the chemistry of a remote planet is one of the more promising ways that researchers could detect extraterrestrial life. On Earth, life produces lots of chemicals that alter the atmosphere: Plants churn out oxygen, for example, and a host of animals and plants release methane. Life elsewhere in the galaxy might do the same thing, leaving a chemical signature humans could detect from afar (SN: 9/30/21).

    But many of life’s gases are also released in processes that have nothing to do with life at all. Their detection could lead to the false impression of a living planet in a faraway solar system, when it’s really just a sterile rock.

    At least one type of compound that some organisms produce to protect themselves from toxic elements, however, might provide unambiguous indications of life.

    The life-affirming compounds are called methylated gases. Microbes, fungi, algae and plants are among the terrestrial organisms that create the chemicals by linking carbon and hydrogen atoms to toxic materials such as chlorine or bromine. The resulting compounds evaporate, sweeping the deadly elements away.

    The fact that living creatures almost always have a hand in making methylated gases means the presence of the compounds in a planet’s atmosphere would be a strong sign of life of some kind, planetary astrobiologist Michaela Leung of the University of California, Riverside said at the meeting.

    The same isn’t true of oxygen and methane. Oxygen, in particular, can accumulate when a hot star warms a planet’s oceans. “You have a steam atmosphere, and the [ultraviolet] radiation from the star splits up the water” into its constituent parts, oxygen and hydrogen, Leung says. Hydrogen is light, so much of it is lost to space on small planets. “What you have left is all of this oxygen,” which, she says, leads to “really convincing oxygen signals in this process that at no point involved life.”

    Similarly, while living organisms produce methane in abundance, lifeless geological phenomena like volcanoes do too.

    Subscribe to Science News

    Get great science journalism, from the most trusted source, delivered to your doorstep.

    At the concentrations of methylated gases typical of Earth, these gases will be hard to see in the atmospheres of distant planets, even with an instrument as powerful as the Webb telescope (SN: 12/20/22). But Leung has reason to believe there may be planets where the gas abundance is thousands of times that of Earth.

    “The most productive environments [for releasing methylated gases] that we see here on Earth,” she says, “are things like estuaries and wetlands.” A watery planet with lots of small continents and correspondingly more coastline, for example, could be packed with organisms cleaning away toxic chemicals with methylated gases.

    One of the benefits of looking for the compounds as a sign of life is that it doesn’t require that the life resembles anything like what we have on our planet. “Maybe it’s not DNA-based, maybe it has other weird chemistry going on,” Leung says. But by assuming chlorine and bromine are likely to be toxic generally, methylated gases offer what Leung calls an agnostic biosignature, which can tell us that something is alive on a planet even if it’s utterly alien to us.

    “The more signs of life we know to look for, then the better our chances of recognizing life when we do encounter it,” says Vikki Meadows, an astrobiologist at the University of Washington in Seattle who was not involved with the study. “It also helps us understand what kind of telescopes we should build, what we should look for and what the instrument requirements should be. Michaela’s work is really important for that reason.” More

  • in

    Io may have an underworld magma ocean or a hot metal heart

    CHICAGO — An entire ocean of liquid magma, or maybe a hot heart of solid metal, may lurk in Io’s underworld.

    The surface of Jupiter’s innermost moon is covered in scorching lava lakes and gored by hundreds of active volcanoes, some spitting molten rock dozens of kilometers high (SN: 8/6/14). Over the years, the moon’s restless, mesmerizing hellscape has attracted the attention of many planetary scientists (SN: 5/3/22).

    Now, researchers are digging into the nature of Io’s infernal interior to explain what is driving the spectacular volcanism on the moon’s fiery surface. “It’s the most volcanically active place in the solar system,” says planetary scientist Samuel Howell of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “But it’s not really clear where that energy comes from.”

    Science News headlines, in your inbox

    Headlines and summaries of the latest Science News articles, delivered to your email inbox every Friday.

    Thank you for signing up!

    There was a problem signing you up.

    Researchers generally agree that Io gets most of its energy from a gravitational tug-of-war between its parent planet Jupiter and its sibling moon Europa. Those grand forces pull on Io’s rocky body, generating tremendous frictional heat in its interior. But how that heat is stored and moved around remains a mystery.

    One explanation is that Io’s netherworld may house an enormous ocean of liquid magma, planetary scientist David Stevenson of Caltech said December 15 at the American Geophysical Union’s fall meeting. Though the exact size of the proposed molten sea remains uncertain, it would need to be relatively large, he said. “The magma ocean could be, say, 100 kilometers thick.”

    In 2011, researchers reported that Io’s mantle couldn’t be completely solid. Magnetic measurements of Io from the Galileo spacecraft indicated there must be an electrically conductive layer inside the moon. A global underground layer containing molten rock, the scientists wrote, would fit the bill.  

    Hot spots speckle the surface of the volcanic moon Io in this infrared image captured by NASA’s Juno spacecraft on July 5, 2022, when the spacecraft was about 80,000 kilometers from the moon.JPL-Caltech/NASA, SwRI, ASI, INAF, JIRAM

    But the researchers couldn’t tell whether that layer would consist of a continuous sea of magma or many little pockets of molten rock dispersed throughout solid rock, resembling a soggy sponge.

    Building off that previous work, Stevenson and Caltech geophysicist Yoshinori Miyazaki calculated that a mixed layer of magma and solid rock beneath Io’s crust would be fundamentally unstable under the amount of heating they predict occurs inside the moon. The molten rock and solid rock would split into distinct layers, with the molten rock coalescing into a subsurface sea, Stevenson said. “The final conclusion is [that] Io has a magma ocean.”

    From astronomy to zoology

    Subscribe to Science News to satisfy your omnivorous appetite for universal knowledge.

    But there are other possibilities. “A lot of information is consistent with a large, global conductive layer that could be a magma ocean,” Howell says. “But I wouldn’t say there’s consensus on how to interpret that data.”

    Instead, the truth may lie within Io’s heart, where a core made of solid metal may lurk, Howell reported December 15 at the meeting. Previous research has suggested that Io has a core rich in metals. Howell and colleagues calculate that a metal core that’s about as rigid as solid ice and a rocky mantle as viscous as Earth’s could fully dispense the immense quantities of heat that Io is estimated to emit. That would fulfill the energy-shedding role of a magma ocean.

    Future measurements collected by NASA’s ongoing Juno mission as well two future spacecraft — NASA’s Europa Clipper and the European Space Agency’s JUICE — may provide the data needed to determine whether either, or some combination, of the hypotheses is correct, Stevenson and Howell said (SN: 12/15/22). Until then, the mystery of what dwells in Io’s dark depths may have to remain in purgatory. More