More stories

  • in

    Stellar winds hint at how planetary nebulae get their stunning shapes

    In their dying throes, some stars leave behind beautiful planetary nebulae — disk, spiral or even butterfly-shaped clouds of dust and gas (SN: 5/17/18).
    How these fantastically shaped clouds arise from round stars is a mystery. New observations of red giant stars suggest that massive planets or other objects orbiting dying stars help stir up stellar winds and shape planetary nebulae, researchers report in the Sept. 18 Science.
    “We were wondering how stars can get these beautiful shapes,” says Leen Decin, an astrophysicist at KU Leuven in Belgium. So she and her colleagues examined 14 stars in the red giant phase, before they become planetary nebulae. Data from the Atacama Large Millimeter/submillimeter Array in Chile revealed that stellar winds — fast-moving flows of gas, dust and subatomic particles such as protons — ejected from the red giant stars have different shapes, including spirals, disks and cones.
    Mathematical calculations revealed that the mass and orbit of nearby objects, such as planets or another star, could be shaping these stellar winds. The researchers also made 3-D simulations based on the calculations. Stellar wind shapes created in the simulations largely matched those seen in the observations, the team found. The speed of the winds and how quickly a red giant loses mass as it slowly dies also play a role in making those shapes.
    Because planetary nebula shapes resemble these winds’ shapes, the researchers conclude that these same forces influence a nebula’s final shape, long before the nebula itself is created.  “The action of the shaping does not happen when the star becomes a planetary nebula,” Decin says, but is already happening hundreds of thousands to millions of years before, during the red giant phase. This means that it might be possible to predict the shapes of planetary nebulae long before they form, she says.
    Some aging red giant stars produce stellar winds in a range of shapes, including disks and spirals, as shown in these false-color images. (Red is stellar wind moving away from Earth; blue is stellar wind moving toward Earth).All images: L. Decin et al/Science 2020, ALMA/ESO
    Capturing the new images with the same telescope in “great detail and high resolution” gives researchers a way to compare the winds of these dying stars one another, says Quentin Parker, an astrophysicist at the University of Hong Kong. Even when scientists look at different stars, there seem to be some common causes of the various shapes seen in the winds, he says.
    Still, there’s sometimes too much time between the red giant phase and the planetary nebula phase to directly connect the two, Parker says. “Although companion objects may indeed play a major role in shaping both red giant winds and planetary nebula,” he says, it doesn’t mean that those stellar winds can always be used for “predicting what the planetary nebula will look like later.” More

  • in

    Rosetta data reveal an invisible ultraviolet aurora around comet 67P

    Comet 67P/Churyumov-Gerasimenko has its own version of the northern lights.
    Observations taken by the Rosetta spacecraft reveal the comet’s aurora, which — unlike Earth’s eye-catching light shows — shimmers in invisible ultraviolet light, researchers report online September 21 in Nature Astronomy. Comet 67P joins comet C/Hyakutake 1996 B2, Mars (SN: 3/19/15), Saturn (SN: 4/6/20) and moons of Jupiter as known hosts of extraterrestrial auroras.
    Electrons in the solar wind — a stream of charged particles continually flowing from the sun — interact with the gas surrounding 67P to create the auroral glow, planetary scientist Marina Galand of Imperial College London and colleagues report. Solar wind electrons are drawn toward the comet by an electric field surrounding 67P, similar to the way electrons cascade into Earth’s atmosphere to produce the northern and southern lights (SN: 7/25/14).
    Electrons strike oxygen in Earth’s atmosphere to paint the sky red and green. But solar wind electrons strike water molecules in 67P’s coma, or shroud of gas. That shatters the water molecules and makes some of the resulting oxygen and hydrogen atoms glow ultraviolet. A similar water-smashing interaction creates auroras on Jupiter’s moons Europa and Ganymede (SN: 3/12/15).
    Also unlike Earth, 67P has no magnetic field to steer incoming electrons toward the poles and form auroras with distinct patterns in the sky (SN: 2/7/20). If 67P’s ultraviolet aurora were visible, it would look like a diffuse halo around the comet.
    Such cometary auroras could someday be used to probe variations in the solar wind, Galand says. That may lead to better forecasts for space weather, which can mess with satellites and power grids (SN: 7/5/18). More

  • in

    Neutrinos could reveal how fast radio bursts are launched

    For over a decade, astronomers have puzzled over the origins of fast radio bursts, brief blasts of radio waves that come mostly from distant galaxies. During that same period, scientists have also detected high-energy neutrinos, ghostly particles from outside the Milky Way whose origins are also unknown.
    A new theory suggests that the two enigmatic signals could come from a single cosmic source: highly active and magnetized neutron stars called magnetars. If true, that could fill in the details of how fast radio bursts, or FRBs, occur. However, finding the “smoking gun” — catching a simultaneous neutrino and radio burst from the same magnetar — will be challenging because such neutrinos would be rare and hard to find, says astrophysicist Brian Metzger of Columbia University. He and his colleagues described the idea in a study posted September 1 at arXiv.org.
    Even so, “this paper gives a possible link between what I think are two of the most exciting mysteries in astrophysics,” says astrophysicist Justin Vandenbroucke of the University of Wisconsin–Madison, who hunts for neutrinos but was not involved in the new work.
    More than 100 fast radio bursts have been detected, but most are too far away for astronomers to see what drives the blasts of energy. Dozens of possible explanations have been debated, from stellar collisions to supermassive black holes to rotating stellar corpses called pulsars to pulsars orbiting black holes (SN: 1/10/18). Some astronomers have even invoked signals from aliens.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    But in the last few years, magnetars have emerged as a top contender. “We don’t know what the engines are of fast radio bursts, but there’s growing confidence that some fraction of them is coming from flaring magnetars,” Metzger says.
    That confidence got a boost in April, when astronomers detected the first radio burst coming from within the Milky Way galaxy (SN: 6/4/20). The burst was close enough — about 30,000 light-years away — that astronomers could trace it back to a young, active magnetar called SGR 1935+2154. “It’s really like a Rosetta stone for understanding FRBs,” Vandenbroucke says.
    There are several ways that magnetars could emit the bursts, Metzger says. The blasts of radio waves could come from close to the neutron star’s surface, for example. Or shock waves produced after the magnetar burped out an energetic flare, similar to those emitted by the sun, could create the radio waves.
    Only those shock waves would produce neutrinos and fast radio bursts at the same time, Metzger says. Here’s how: Some magnetars emit flares repeatedly, enriching their surroundings with charged particles. Crucially, each flare would excavate some protons from the neutron star’s surface. Other situations could give a magnetar a halo of electrons, but protons would come only from the magnetar itself. If the magnetar has a halo of electrons, adding protons to the mix sets the stage for the double dose of cosmic phenomena.
    As the next flare runs into the protons released by the previous flare, it would accelerate protons and electrons in the same direction at the same speeds. This “ordered dance” of electrons could give rise to the fast radio burst by converting the energy of the electrons’ movement into radio waves, Metzger says. And the protons could go through a chain reaction that results in a single high-energy neutrino per proton.
    Together with astrophysicists Ke Fang of Stanford University and Ben Margalit of the University of California, Berkeley, Metzger calculated the energies of any neutrinos that would have been produced by the fast radio burst seen in April. The team found those energies matched those that could be detected by the IceCube neutrino observatory in Antarctica.
    But IceCube didn’t detect any neutrinos from that magnetar in April, says Vandenbroucke, who has been searching for signs of neutrinos from fast radio bursts in IceCube data since 2016. That’s not surprising, though. Because neutrinos from FRBs are expected to be rare, detecting any will be challenging, and would probably require a particularly bright magnetar flare to be aimed directly at Earth.
    Vandenbroucke has made bets with his students on other aspects of their research, but he says he won’t put any money down on whether he’ll see a neutrino from a fast radio burst in his lifetime. “There’s too much uncertainty,” he says.
    Still, he’s optimistic. “Even detecting one neutrino from one [fast radio burst] would be a discovery, and it would take only one lucky FRB to produce a detectable neutrino,” he says. More

  • in

    How do you clean up clingy space dust? Zap it with an electron beam

    The NASA Artemis missions aim to send astronauts to the moon by 2024. But to succeed, they’ll need to solve big problems caused by some tiny particles: dust.
    Impacts on the moon’s surface have crushed lunar rock into dust over billions of years (SN: 1/17/19). The resulting particles are like “broken shards of glass,” says Mihály Horányi, a physicist at the University of Colorado Boulder. This abrasive material can damage equipment and even harm astronauts’ health if inhaled (SN: 12/3/13). Making matters worse, the sun’s radiation gives moon dust an electric charge, so it sticks to everything.
    Horányi and colleagues have discovered a new method for combatting lunar dust’s static cling, using a low-powered electron beam to make dust particles fly off surfaces. It complements existing approaches to the sticky problem, the researchers report online August 8 in Acta Astronautica.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    During the Apollo missions, astronauts relied on a low-tech system to clean lunar dust off their spacesuits: brushes. Such mechanical methods, however, are thwarted by the electrically charged nature of lunar dust, which clings to the nooks and crannies of woven spacesuit fabric.
    The newly described method takes advantage of the dust’s electrical properties. An electron beam causes dust to release electrons into the tiny spaces between particles. Some of these negatively charged electrons are absorbed by surrounding dust specks. Because the charged particles repel each other, the resulting electric field “ejects dust off the surface,” says Xu Wang, a physicist also at the University of Colorado Boulder.
    [embedded content]
    Abrasive, electrically charged lunar dust clings to surfaces and could wreak havoc on equipment and astronaut well-being during missions to the moon. An electron beam may aid future cleaning efforts. As shown here, when a beam hits artificial lunar dust on a glass plate, particles leap off the surface.
    “This is a very unique idea,” says mechanical engineer Hiroyuki Kawamoto of Waseda University in Tokyo, who was not involved in the new work. Kawamoto and colleagues have developed their own dust-busting technologies, including a layer of electrodes that can be built into materials. When embedded in a spacesuit or on the surface of equipment, the electrodes generate electrostatic forces and fling away charged dust particles. Such systems are more complex than shooting an electron beam at surfaces, Wang says. But a potential downside to the simpler electric beam idea, Kawamoto says, is that it would require a robot or some other external means to direct it.
    Another limitation of the electron beam is that it left behind 15 to 25 percent of dust particles. The researchers aim to improve the cleaning power. The team also envisions the electron beam as one of multiple approaches that future space explorers will take to keep surfaces clean, Horányi says, in addition to suit design, other cleaning technologies and, one day, even lunar habitats with moon dust mudrooms. More

  • in

    Phosphine gas found in Venus’ atmosphere may be ‘a possible sign of life’

    Venus’ clouds appear to contain a smelly, toxic gas that could be produced by bacteria, a new study suggests.
    Chemical signs of the gas phosphine have been spotted in observations of the Venusian atmosphere, researchers report September 14 in Nature Astronomy. Examining the atmosphere in millimeter wavelengths of light showed that the planet’s clouds appear to contain up to 20 parts per billion of phosphine — enough that something must be actively producing it, the researchers say. 
    If the discovery holds up, and if no other explanations for the gas are found, then the hellish planet next door could be the first to yield signs of extraterrestrial life — though those are very big ifs.
    “We’re not saying it’s life,” says astronomer Jane Greaves of Cardiff University in Wales. “We’re saying it’s a possible sign of life.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Venus has roughly the same mass and size as Earth, so, from far away, the neighboring planet might look like a habitable world (SN: 10/4/19). But up close, Venus is a scorching hellscape with sulfuric acid rain and crushing atmospheric pressures.
    Still, Venus might have been more hospitable in the recent past (SN: 8/26/16). And the current harsh conditions haven’t stopped astrobiologists from speculating about niches on Venus where present-day life could hang on, such as the temperate cloud decks.
    “Fifty kilometers above the surface of Venus, the conditions are what you would find if you walk out of your door right now,” at least in terms of atmospheric pressure and temperature, says planetary scientist Sanjay Limaye of the University of Wisconsin–Madison, who was not involved in the new study. The chemistry is alien, but “that’s a hospitable environment for life.”
    Previous work led by astrochemist Clara Sousa-Silva at MIT suggested that phosphine could be a promising biosignature, a chemical signature of life that can be detected in the atmospheres of other planets using Earth-based or space telescopes.
    On Earth, phosphine is associated with microbes or industrial activity — although that doesn’t mean it’s pleasant. “It’s a horrific molecule. It’s terrifying,” Sousa-Silva says. For most Earthly life, phosphine is poisonous because “it interferes with oxygen metabolism in a variety of macabre ways.” For anaerobic life, which does not use oxygen, “phosphine is not so evil,” Sousa-Silva says. Anaerobic microbes living in such places as sewage, swamps and the intestinal tracts of animals from penguins to people are the only known life-forms on Earth that produce the molecule.  
    Still, when Greaves and colleagues searched Venus’ skies for signs of phosphine, the researchers didn’t expect to actually find any. Greaves looked at Venus with the James Clerk Maxwell Telescope in Hawaii over five mornings in June 2017, aiming to set a detectability benchmark for future studies seeking the gas in the atmospheres of exoplanets (SN: 5/4/20), but was startled to find the hints of phosphine. “That’s a complete surprise,” Greaves says. When she was analyzing the observations, “I thought ‘Oh, I must have done it wrong.’”
    Signs of phosphine first showed up in data taken with the James Clerk Maxwell Telescope in Hawaii.Will Montgomerie/JCMT/EAO
    So the team checked again with a more powerful telescope, the Atacama Large Millimeter/submillimeter Array in Chile, in March 2019. But the signature of phosphine — seen as a dip in the spectrum of light at about 1.12 millimeters — was still there. The gas absorbs light in that wavelength. Some other molecules also absorb light near that wavelength, but those either couldn’t explain the whole signal or seemed improbable, Greaves says. “One of those is a plastic,” she says. “I think a floating plastic factory is a less plausible explanation than just saying there’s phosphine.”
    Phosphine takes a fair amount of energy to create and is easily destroyed by sunlight or sulfuric acid, which is found in Venus’ atmosphere. So if the gas was produced a long time ago, it shouldn’t still be detectable. “There has to be a source,” Greaves says.
    Greaves, Sousa-Silva and colleagues considered every explanation they could think of apart from life: atmospheric chemistry; ground and subsurface chemistry; volcanoes outgassing phosphine from the Venusian interior; meteorites peppering the atmosphere with phosphine from the outside; lightning; solar wind; tectonic plates sliding against each other. Some of those processes could produce trace amounts of phosphine, the team found, but orders of magnitude less than the team detected.
    “We’re at the end of our rope,” Sousa-Silva says. She hopes other scientists will come up with other explanations. “I’m curious what kind of exotic geochemistry people will come up with to explain this abiotically.”
    The idea of searching for life on Venus “has been regarded as a pretty out-there concept,” says Planetary Science Institute astrobiologist David Grinspoon, who is based in Washington, D.C. Grinspoon has been publishing about the prospects for life on Venus since 1997, but was not involved in the new discovery.
    “So now I hear about this, and I’m delighted,” he says. “Not because I want to declare victory and say this is definite evidence of life on Venus. It’s not. But it’s an intriguing signature that could be a sign of life on Venus. And it obligates us to go investigate further.”
    Because of the planet’s acidic atmosphere, extreme pressures and lead-melting temperatures, sending spacecraft to Venus is a challenge (SN: 2/13/18). But several space agencies are considering missions that could fly in the next few decades.
    In the meantime, Greaves and colleagues want to confirm the new phosphine detection in other wavelengths of light. Observations they had planned for the spring were put on hold by the coronavirus pandemic. And now, Venus is in a part of its orbit where it’s on the other side of the sun.
    “Maybe when Venus comes around on the other side of the sun again,” Greaves says, “things will be better for us here on Earth.” More

  • in

    Dark matter clumps in galaxy clusters bend light surprisingly well

    Dark matter just got even more puzzling.
    This unidentified stuff, which makes up most of the mass in the cosmos, is invisible but detectable by the way it gravitationally tugs on objects like stars. (SN: 11/25/19). Dark matter’s gravity can also bend light traveling from distant galaxies to Earth — but now some of this mysterious substance appears to be bending light more than it’s supposed to. A surprising number of dark matter clumps in distant clusters of galaxies severely warp background light from other objects, researchers report in the Sept. 11 Science.
    This finding suggests that these clumps of dark matter, in which individual galaxies are embedded, are denser than expected. And that could mean one of two things: Either the computer simulations that researchers use to predict galaxy cluster behavior are wrong, or cosmologists’ understanding of dark matter is.
    Very high concentrations of dark matter can act like a lens to bend light and drastically alter the appearance of background galaxies as seen from Earth — stretching them into arcs or splitting them into multiple images of the same object on the sky. “It’s totally cool. It’s like a fun house mirror,” says astrophysicist Priyamvada Natarajan of Yale University.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Judging by computer simulations of galaxy clusters, clumps of dark matter around individual galaxies that are dense enough to cause such dramatic gravitational lensing effects should be rare (SN: 10/4/15). Based on cluster simulations run by Natarajan and colleagues, “we would expect to see 1 [strong lensing] event in every 10 clusters or so,” says study coauthor Massimo Meneghetti, an astrophysicist at the Astrophysics and Space Science Observatory of Bologna in Italy.
    But telescope images told a different story. The researchers used observations from the Hubble Space Telescope and the Very Large Telescope in Chile to investigate 11 galaxy clusters from about 2.8 billion to 5.6 billion light-years away. In that set, the team identified 13 cases of severe gravitational lensing by dark matter clumps around individual galaxies. These observations indicate there are more high-density dark matter clumps in real galaxy clusters than in simulated ones, Meneghetti says.
    The simulations could be missing some physics that leads dark matter in galaxy clusters to glom tightly together, Natarajan says. “Or … there’s something fundamentally off about our assumptions about the nature of dark matter,” she says, like the notion that gravity is the only attractive force that dark matter feels.
    Richard Ellis, a cosmologist at the University College London who was not involved in the work, thinks the crux of the problem is more likely in the computer simulations than in the nature of dark matter. “A cluster of galaxies is a very dangerous place. It’s like the Manhattan of the universe,” he says — busy with galaxies whizzing past one another, colliding and getting torn up. “There’s awful physics that goes into predicting how many of these little lensed things they should find,” Ellis says, so the new result “is intriguing, but my suspicion is that there’s something in the simulations … that isn’t quite right.”
    Future observations with the upcoming Euclid space telescope (SN: 11/14/17), the Nancy Grace Roman Space Telescope and Vera C. Rubin Observatory (SN: 1/10/20) could help clear matters up, says Bhuvnesh Jain, an astrophysicist at the University of Pennsylvania who was not involved in the work. “These three telescopes are going to produce extremely large samples of galaxy clusters,” he says. That may lead to a new understanding of the physics in these turbulent environments, and help determine whether unrealistic simulations are to blame for this dark matter mystery. More

  • in

    A weirdly warped planet-forming disk circles a distant trio of stars

    In one of the most complex cosmic dances astronomers have yet spotted, three rings of gas and dust circle a trio of stars.
    The star system GW Orionis, located about 1,300 light-years away in the constellation Orion, includes a pair of young stars locked in a close do-si-do with a third star making loops around both. Around all three stars is a broken-apart disk of dust and gas where planets could one day form. Unlike the flat disk that gave rise to the planets in our solar system, GW Orionis’ disk consists of three loops, with a warped middle ring and an inner ring even more twisted at a jaunty angle to the other two.
    The bizarre geometry of this system, the first known of its kind, is reported in two recent studies by two groups of astronomers. But how GW Orionis formed is a mystery, with the two teams providing competing ideas for the triple-star-and-ring system’s birth.
    In a Sept. 4 study in Science, astronomer Stefan Kraus of the University of Exeter in England and colleagues suggest that gravitational tugs and torques from the triple-star ballet tore apart and deformed the primordial disk. But in a May 20 study in the Astrophysical Journal Letters, Jiaqing Bi of the University of Victoria in Canada and colleagues think that a newborn planet is to blame.
    “The question is how do you actually form such systems,” says theoretical physicist Giuseppe Lodato of the University of Milan, who was not on either team. “There could be different mechanisms that could do that.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Astronomers have seen tilted disks of gas and dust around binary star systems, but not systems of more than two stars (SN: 7/30/14). Around half of the stars in the galaxy have at least one stellar companion, and their planets often have tilted orbits with respect to their stars, going around more like a jump rope than a Hula-Hoop (SN: 11/1/13). That misalignment could originate with the disk in which the planets were born: If the disk was askew, the planets would be too.
    About a decade ago, astronomers first realized that GW Orionis has three stars and a planet-forming disk, and the scientists scrambled to get a closer look. (At the time, it was impossible to tell if that disk was a single loop or not.) Bi’s team and Kraus’ team aimed the Atacama Large Millimeter/submillimeter Array in Chile at the triple-star system.
    Both groups spotted the trio of stars: one about 2.5 times and another about 1.4 times the sun’s mass orbiting each other once every 242 days, and another 1.4 solar mass star orbiting the inner pair about every 11 years.
    The observations also revealed three distinct rings of dust and gas encircling the stars. The closest ring to the star trio lies about 46 times the distance from Earth to the sun; the middle one about 185 times the Earth-sun distance; and the outermost ring about 340 times that distance. For perspective, Neptune is about 30 times the distance from Earth to the sun.
    That innermost ring is strongly misaligned with respect to the other rings and the stars, the teams found. Kraus’ group added observations from the European Southern Observatory’s Very Large Telescope to show the shadow of the inner ring on the inside of the middle loop. That shadow revealed that the middle ring is warped, swooping up on one side and down on the other.
    Astronomers looked at GW Orionis with the ALMA telescope array (left, blue) and the SPHERE instrument on the Very Large Telescope (right, red), both in Chile. The ALMA observations revealed the disk’s tri-ringed structure, while the SPHERE images showed the shadow cast by the innermost ring, allowing scientists to describe the rings’ deformed shapes in detail.Left image: ALMA/ESO, NAOJ, NRAO; Right image: ESO, S. Kraus et al, Univ. of Exeter
    Next, both groups ran computer simulations to figure out how the system formed. This is where their conclusions begin to differ, Bi says. His team suggests that a newly formed, not-yet-discovered planet cleared its orbit of gas and dust, splitting the inner ring off from the rest of the disk (SN: 7/16/19). Once the disk was split, the inner ring was free to swing around the stars, settling into its skewed alignment.
    Simulations from Kraus’s team, though, found that the chaotic gravity from the triple stars’ orbital dance alone was enough to break up the disk, a phenomenon called disk tearing. Each star tends to keep the disk aligned with itself, and the tug-of-war warped and sheared the disk, and twisted the inner ring even further. Theoretical studies had suggested disk tearing might happen in multiple star systems, but this is the first time it’s been seen in real life, Kraus contends.
    “I think it’s plausible that there could be planets somewhere in the system, but they’re not needed to explain the misalignment,” he says. “We don’t need to invoke undiscovered planets to explain what we see.”
    [embedded content]
    A trio of stars in GW Orionis are surrounded by an enormous, warped disk of gas and dust, new observations reveal. This animation, which is based on computer simulations and observational data, shows the complex geometry of the deformed and broken-apart disk.
    The difference may lie in the assumptions that the groups made about the disk’s properties, in particular its viscosity, says astrophysicist Nienke van der Marel, Bi’s colleague at the University of Victoria. A more viscous disk would tear like how Kraus and colleagues propose, but a less viscous disk needs a planet to break apart, she says. She thinks her team’s work is more realistic based on observations of other star systems. But with current technology, there’s no way to tell what the properties of GW Orionis’ disk are really like.
    And neither group could explain what made the disk split into three. “We don’t really know what’s causing the outer ring,” Klaus says.
    Lodato, who predicted the disk-tearing effect in 2013, thinks GW Orionis is proof that the phenomenon really exists. Back then, Lodato and colleagues were “very worried” that their simulations showed an effect that was introduced by the computations, not real physics, he says. “Now observations tell us that it does happen in reality.”
    Future telescopes may also be able to spot the planet if it exists, van der Marel says. More

  • in

    Record-breaking gravitational waves reveal that midsize black holes do exist

    The biggest. The farthest. The most energetic. A new detection of gravitational waves from two colliding black holes has racked up multiple superlatives.
    What’s more, it also marks the first definitive sighting of an intermediate mass black hole, one with a mass between 100 and 100,000 times the sun’s mass. That midsize black hole was forged when the two progenitor black holes coalesced to form a larger one with about 142 solar masses. It significantly outweighs all black holes previously detected via gravitational waves, ripples that wrinkle spacetime in the aftermath of extreme events.
    “This is the big guy we’ve been waiting for, for the longest time,” says Emanuele Berti, a physicist at Johns Hopkins University who was not involved with the research. One of the behemoth’s two progenitors was itself so massive that scientists are pondering how to explain its existence.
    Detected on May 21, 2019, the gravitational waves originated from a source about 17 billion light-years from Earth, making this the most distant detection confirmed so far. It’s also the most energetic event yet seen, radiating about eight times the equivalent of the sun’s mass in energy, says astrophysicist Karan Jani of Vanderbilt University in Nashville, a member of the LIGO Scientific Collaboration. “I hope it deserves its own entry in the record book.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    The new event dethrones the previous record-holder, a collision that occurred about 9 billion light-years away that radiated about five solar masses worth of energy, and created a black hole of 80 solar masses (SN: 12/4/18).
    Researchers with LIGO, or the Advanced Laser Interferometer Gravitational-Wave Observatory, in the United States and Advanced Virgo in Italy reported the new detection September 2 in two papers in Physical Review Letters and the Astrophysical Journal Letters.
    While scientists know of black holes with tens of solar masses and others with millions or billions of solar masses, the intermediate echelon has remained elusive. Previous purported sightings of intermediate mass black holes have been questioned (SN:1/22/16).
    But, for the new event, “there’s no doubt,” says astrophysicist Cole Miller of University of Maryland at College Park, who was not involved with the study. “This demonstrates that there is now at least one intermediate mass black hole in the universe.”
    The black hole’s two progenitors were themselves heftier than any seen colliding before — at about 85 and 66 times the mass of the sun. That has scientists puzzling over how this smashup came to be.

    Normally, physicists expect that the black holes involved in these mergers would each have formed in the collapse of a dying star. But in the new event, the larger of the pair is so big that it couldn’t have formed that way. The known processes that go on within a star’s core mean that stars that are the right mass to form such a big black hole would blow themselves apart completely, rather than leaving behind a corpse.
    Instead, it might be that one or both of the colliding black holes formed from an earlier round of black hole mergers, within a crowded cluster of stars and black holes (SN: 1/30/17). That would make for a family tree that began with black holes lightweight enough to form from collapsing stars.
    But there’s a problem with the multiple-merger explanation. Each time black holes merge, that coalescence provides a kick to their velocity, which would normally launch the resulting black hole out of the cluster, preventing further mergers.
    However, mergers as massive as the new event seem to be very rare, given that LIGO and Virgo have detected only one. That means, Miller says, “my gosh, you’re allowed to invoke a tooth fairy,” a relatively unlikely process. Perhaps, he says, the kick might sometimes be small enough that the black holes could stay within their cluster and merge again.
    The May 21 gravitational wave event had previously been publicly reported as an unconfirmed candidate, to allow astronomers to look for flashes of light in the sky that might have resulted from the collision. Some researchers had suggested that the waves might have been associated with a flare of light from the center of a distant galaxy (SN: 6/25/20). But that galaxy is significantly closer than the distance now pinpointed in the new papers, at about 8 billion light-years from Earth rather than 17 billion, making the explanation less plausible.
    The longer LIGO and Virgo observe the heavens, the more the bounty of unusual events can be expected to grow, Miller says. “We are going to have a set of ‘gosh, didn’t expect that’ type of events, which are thrilling to think about and extremely informative about the universe.” More