More stories

  • in

    Some bacteria are suffocating sea stars, turning the animals to goo

    The mysterious culprit behind a deadly sea star disease is not an infection, as scientists once thought.
    Instead, multiple types of bacteria living within millimeters of sea stars’ skin deplete oxygen from the water and effectively suffocate the animals, researchers report January 6 in Frontiers in Microbiology. Such microbes thrive when there are high levels of organic matter in warm water and create a low oxygen environment that can make sea stars melt in a puddle of slime.
    Sea star wasting disease — which causes lethal symptoms like decaying tissue and loss of limbs — first gained notoriety in 2013 when sea stars living off the U.S. Pacific Coast died in massive numbers. Outbreaks of the disease had also occurred before 2013, but never at such a large scale.
    Scientists suspected that a virus or bacterium might be making sea stars sick. That hypothesis was supported in a 2014 study that found unhealthy animals may have been infected by a virus (SN: 11/19/14). But the link vanished when subsequent studies found no relationship between the virus and dying sea stars, leaving researchers perplexed (SN: 5/5/16). 

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    The new finding that a boom of nutrient-loving bacteria can drain oxygen from the water and cause wasting disease “challenges us to think that there might not always be a single pathogen or a smoking gun,” says Melissa Pespeni, a biologist at the University of Vermont in Burlington who was not involved in the work. Such a complex environmental scenario for killing sea stars “is a new kind of idea for [disease] transmission.”  
    There were certainly many red herrings during the hunt for why sea stars along North America’s Pacific Coast were melting into goo, says Ian Hewson, a marine biologist at Cornell University. In addition to the original hypothesis of a viral cause for sea star wasting disease — which Hewson’s team reported in 2014 in Proceedings of the National Academy of Sciences but later disproved — he and colleagues analyzed a range of other explanations, from differences in water temperature to exposing the animals to bacteria. But nothing reliably triggered wasting.   
    Then the researchers examined the types of bacteria living with healthy sea stars compared with those living among the animals with wasting disease. “That was when we had our aha moment,” says Hewson.
    Not all sea stars are susceptible to sea star wasting disease. Species that have more structures on their surface, and therefore more surface area for bacteria to deplete oxygen, appear more likely to get severely sick compared with flatter sea stars. In this photo, an ochre sea star (Pisaster ochraceus) succumbs to the disease in Davenport, Calif., in June 2018.Ian Hewson
    Types of bacteria known as copiotrophs, which thrive in environments with lots of nutrients, were present around the sea stars at higher levels than normal either shortly before the animals developed lesions or as they did so, Hewson and colleagues found. Bacterial species that survive only in environments with little to no oxygen were also thriving. In the lab, the sea stars began wasting when the researchers added phytoplankton or a common bacterial-growth ingredient to the warm water tubs those microbes and sea stars were living in.  
    Experimentally depleting oxygen from the water had a similar effect, causing lesions in 75 percent of the animals, while none succumbed in the control group. Sea stars breathe by diffusing oxygen over small external projections called skin gills, so the lack of oxygen in the wake of flourishing copiotrophs leaves sea stars struggling for air, the data show. It’s unclear how the animals degrade in low oxygen conditions, but it could be due to massive cell death.
    Although the disease isn’t caused by a contagious pathogen, it is transmissible in the sense that dying sea stars generate more organic matter that spur bacteria to grow on healthy animals nearby. “It’s a bit of a snowball effect,” Hewson says.
    The team also analyzed tissues from sea stars that had succumbed in the 2013 mass die-off — which followed a large algal bloom on the U.S. West Coast — to see if such environmental conditions might explain that outbreak. In fast-growing appendages that help them move, the sea stars that perished had high amounts of a form of nitrogen found in low oxygen conditions — a sign that those animals may have died from a lack of oxygen.
    The problem may get worse with climate change, Hewson says. “Warmer waters can’t have as much oxygen [compared with colder water] just by physics alone.” Bacteria, including copiotrophs, also flourish in warm water.  
    But pinpointing the likely cause could help experts better treat sick sea stars in the lab, Hewson says. Some techniques include increasing the oxygen levels in a water tank to make the gas more easily available to sea stars or getting rid of extra organic matter with ultraviolet light or water exchange.
    “There’s still a lot to figure out with this disease, but I think [this new study] gets us a long way to understanding how it comes about,” Pespeni says. More

  • in

    Plastic waste forms huge, deadly masses in camel guts

    Marcus Eriksen was studying plastic pollution in the Arabian Gulf when he met camel expert Ulrich Wernery. “[Ulrich] said, ‘You want to see plastic? Come with me.’ So we went deep into the desert,” Eriksen recalls. Before long, they spotted a camel skeleton and began to dig through sand and bones.
    “We unearthed this mass of plastic, and I was just appalled. I couldn’t believe that — almost did not believe that — a mass as big as a medium-sized suitcase, all plastic bags, could be inside the rib cage of this [camel] carcass,” says Eriksen, an environmental scientist at the 5 Gyres Institute, a plastic pollution research and education organization in Santa Monica, Calif.
    “We hear about marine mammals, sea lions, whales, turtles and seabirds impacted” by plastic waste, Eriksen says (SN: 6/6/19). But “this is not just an ocean issue. It’s a land issue, too. It’s everywhere.”
    About 390,000 dromedary camels (Camelus dromedarius) live in the United Arab Emirates. Now in a study in the February 2021 Journal of Arid Environments, Eriksen, Wernery and colleagues estimate that plastic kills around 1 percent of these culturally important animals.
    Of 30,000 dead camels that Wernery, a veterinary microbiologist at the Central Veterinary Research Laboratory in Dubai, and his team have examined since 2008, 300 had guts packed with plastic ranging from three to 64 kilograms. The researchers dubbed these plastic masses “polybezoars” to distinguish them from naturally occurring hair and plant fiber bezoars.
    When camels eat plastic, it accumulates into enormous, stomach-clogging masses called polybezoars. Researchers found these polybezoars — the biggest of which weighs almost 64 kilograms — inside dead camels in the desert near Dubai.M. Eriksen et al/J. Arid Enviro. 2021
    When camels eat plastic, it accumulates into enormous, stomach-clogging masses called polybezoars. Researchers found these polybezoars — the biggest of which weighs almost 64 kilograms — inside dead camels in the desert near Dubai.M. Eriksen et al/J. Arid Enviro. 2021
    As dromedaries roam the desert looking for food, they munch on plastic bags and other trash that drift into trees and pile up along roadsides. “From the camel’s perspective … if it’s not sand, it’s food,” Eriksen says.
    With a stomach full of plastic, camels don’t eat because they don’t feel hungry, and they starve to death. Plastic can also leach toxins and introduce bacteria that poison the one-humped mammals, Wernery says.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    “If 1 percent mortality due to plastic is verified by future and more detailed studies, then plastic pollution will certainly represent a reason of concern for [camels],” says Luca Nizzetto, an environmental scientist at the Norwegian Institute for Water Research in Oslo, who was not involved with the research. “These types of studies are relevant to raise social awareness about this pollution.”
    Banning plastic bags and single-use plastics is crucial for protecting camels and other wildlife, Eriksen says. “Plastic bags are escape artists. They blow out of garbage cans, out of landfills, out of trucks and out of people’s hands. They travel for hundreds of miles.” More

  • in

    How frigid lizards falling from trees revealed the reptiles’ growing cold tolerance

    After the coldest night in south Florida in a decade, lizards were dropping out of palm trees, landing legs up. The scientists who raced to investigate the fallen reptiles have now found that, despite such graceless falls, some of these tropical, cold-blooded creatures are actually more resilient to cold than previously thought.
    The finding sheds light on how some species might respond to extreme weather events caused by human-caused climate change (SN: 12/10/19). Although climate change is expected to include gradual warming globally, scientists think that extreme events such as heat waves, cold snaps, droughts and torrential downpours could also grow in number and strength over time.
    The idea for the new study was born after evolutionary ecologist James Stroud received a photo of a roughly 60-centimeter-long iguana prone on its back on a sidewalk from a friend in Key Biscayne, an island town south of Miami. The previous night, temperatures dropped to just under 4.4° Celsius (40° Fahrenheit).
    “When air temperatures drop below a critical limit, lizards lose the ability to move,” says Stroud, of Washington University in St. Louis. Lizards that sleep in trees “may lose their grip.” Stunned lizards on the ground are likely easy prey for predators, he notes.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Realizing that the cold snap could be used to study how future instances of extreme weather might affect such animals in the wild, Stroud and colleagues rushed to collect live specimens of as many different kinds of lizards as they could in the Miami area (SN: 8/27/20). The researchers then tested how well the six reptile species they captured tolerated cold by sticking thermometers on the animals, placing them in a large cooler of ice and observing how cold they got before becoming too stunned to right themselves after getting flipped on their backs.
    Stroud and colleagues had previously run similar tests on these lizard species as part of research on invasive species. That work in 2016 suggested that the reptiles might not easily withstand cold snaps like the recent one — cold tolerances ranged from as low as about 7.7° C for the Puerto Rican crested anole (Anolis cristatellus) to roughly 11.1° C for the brown basilisk (Basiliscus vittatus).
    Some tropical, cold-blooded lizards, such as this brown basilisk (Basiliscus vittatus), are more resilient to cold than previously thought, a new study finds.John Sullivan/iNaturalist (CC BY-NC 4.0)
    The new study, however, revealed that the reptiles now could withstand temperatures roughly 1 to 4 degrees C colder. Oddly, the lizards, on average, could all endure cold down to the same lowest temperature, about 5.5° C, the researchers report in the October Biology Letters. Given the great variation in size, ecology and physiology between these species, “this was a really unexpected result,” and one that the researchers don’t have an explanation for, Stroud says.
    Natural selection may be behind the change, meaning that abnormally cold temperatures are killing off those individuals that could not survive and leaving behind those that happen to be better able to tolerate cold. Alternatively, the reptiles’ bodies could have changed in some way to acclimate to the colder temperatures. Stroud hopes in the future to measure the cold tolerance of lizards immediately before a forecasted cold snap and then examine the same reptiles immediately afterward to look for signs of acclimation.
    Scientists have long thought that tropical species, which have typically evolved in thermally stable environments, might prove especially vulnerable to major shifts in temperature (SN: 5/20/15). This new study reveals a way in which species can either rapidly evolve or acclimate, which “may provide ecosystems with some resilience to extreme climate events,” says Alex Pigot, an ecologist at University College London who did not take part in the research.
    One remaining question “is whether this resilience also applies to extreme heating events,” Pigot adds. “Previous evidence has suggested that species’ upper thermal limits may be less flexible than their lower thermal limits.” More

  • in

    The diabolical ironclad beetle can survive getting run over by a car. Here’s how

    The diabolical ironclad beetle is like a tiny tank on six legs.
    This insect’s rugged exoskeleton is so tough that the beetle can survive getting run over by cars, and many would-be predators don’t stand a chance of cracking one open. Phloeodes diabolicus is basically nature’s jawbreaker.
    Analyses of microscope images, 3-D printed models and computer simulations of the beetle’s armor have now revealed the secrets to its strength. Tightly interlocked and impact-absorbing structures that connect pieces of the beetle’s exoskeleton help it survive enormous crushing forces, researchers report in the Oct. 22 Nature. Those features could inspire new, sturdier designs for things such as body armor, buildings, bridges and vehicles.
    The diabolical ironclad beetle, which dwells in desert regions of western North America, has a distinctly hard-to-squish shape. “Unlike a stink beetle, or a Namibian beetle, which is more rounded … it’s low to the ground [and] it’s flat on top,” says David Kisailus, a materials scientist at the University of California, Irvine. In compression experiments, Kisailus and colleagues found that the beetle could withstand around 39,000 times its own body weight. That would be like a person shouldering a stack of about 40 M1 Abrams battle tanks.
    Within the diabolical ironclad beetle’s own tanklike physique, two key microscopic features help it withstand crushing forces. The first is a series of connections between the top and bottom halves of the exoskeleton. “You can imagine the beetle’s exoskeleton almost like two halves of a clamshell sitting on top of each other,” Kisailus says. Ridges along the outer edges of the top and bottom latch together.
    This slice of a diabolical ironclad beetle’s back shows the jigsaw-shaped links that connect the left and right sides of its exoskeleton. These protrusions are tightly interlocked and highly damage-resistant, helping give the beetle its incredible durability.David Kisailus
    But those ridged connections have different shapes across the beetle’s body. Near the front of the beetle, around its vital organs, the ridges are highly interconnected — almost like zipper teeth. Those connections are stiff and resist bending under pressure.
    The connective ridges near the back of the beetle, on the other hand, are not as intricately interlocked, allowing the top and bottom halves of the exoskeleton to slide past each other slightly. That flexibility helps the beetle absorb compression in a region of its body that is safer to squish.
    The second key feature is a rigid joint, or suture, that runs the length of the beetle’s back and connects its left and right sides. A series of protrusions, called blades, fit together like jigsaw puzzle pieces to join the two sides. These blades contain layers of tissue glued together by proteins, and are highly damage-resistant. When the beetle is squashed, tiny cracks form in the protein glue between the layers of each blade. Those small, healable fractures allow the blades to absorb impacts without completely snapping, explains Jesus Rivera, an engineer at UC Irvine.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    This toughness makes the diabolical ironclad beetle pretty predator-proof. An animal might be able to make a meal out of the beetle by swallowing it whole, Kisailus says. “But the way it’s built, in terms of other predation — let’s say like a bird that’s pecking at it, or a lizard that’s trying to chew on it — the exoskeleton would be really hard” to crack.
    That hard exterior is also a nuisance for insect collectors. The diabolical ironclad beetle is notorious among entomologists for being so fantastically durable that it bends the steel pins usually used to mount insects for display, says entomologist Michael Caterino of Clemson University in South Carolina. But “the basic biology of this thing is not particularly well-known,” he says. “I found it fascinating” to learn what makes the beetle so indestructible.
    The possibility of using beetle-inspired designs for sturdier airplanes and other structures is intriguing, Caterino adds. And with the splendid variety of insects all over the world, who knows what other critters might someday inspire clever engineering designs. More

  • in

    Penguin poop spotted from space ups the tally of emperor penguin colonies

    Patches of penguin poop spotted in new high-resolution satellite images of Antarctica reveal a handful of small, previously overlooked emperor penguin colonies.
    Eight new colonies, plus three newly confirmed, brings the total to 61 — about 20 percent more colonies than thought, researchers report August 5 in Remote Sensing in Ecology and Conservation. That’s the good news, says Peter Fretwell, a geographer at the British Antarctic Survey in Cambridge, England.
    The bad news, he says, is that the new colonies tend to be in regions highly vulnerable to climate change, including a few out on the sea ice. One newly discovered group lives about 180 kilometers from shore, on sea ice ringing a shoaled iceberg. The study is the first to describe such offshore breeding sites for the penguins.

    Penguin guano shows up as a reddish-brown stain against white snow and ice (SN: 3/2/18). Before 2016, Fretwell and BAS penguin biologist Phil Trathan hunted for the telltale stains in images from NASA’s Landsat satellites, which have a resolution of 30 meters by 30 meters.
    Emperor penguins turned a ring of sea ice around an iceberg into a breeding site. The previously unknown colony was found near Ninnis Bank, a spot 180 kilometers offshore, thanks to a brown smudge (arrow) left by penguin poop.P.T. Fretwell and P.N. Trathan/Remote Sensing in Ecology and Conservation 2020
    The launch of the European Space Agency’s Sentinel satellites, with a much finer resolution of 10 meters by 10 meters, “makes us able to see things in much greater detail, and pick out much smaller things,” such as tinier patches of guano representing smaller colonies, Fretwell says. The new colony tally therefore ups the estimated emperor penguin population by only about 10 percent at most, or 55,000 birds.
    Unlike other penguins, emperors (Aptenodytes forsteri) live their entire lives at sea, foraging and breeding on the sea ice. That increases their vulnerability to future warming: Even moderate greenhouse gas emissions scenarios are projected to melt much of the fringing ice around Antarctica (SN: 4/30/20). Previous work has suggested this ice loss could decrease emperor penguin populations by about 31 percent over the next 60 years, an assessment that is shifting the birds’ conservation status from near threatened to vulnerable. More

  • in

    Power lines may mess with honeybees’ behavior and ability to learn

    Power lines could be messing with honeybees by emitting electromagnetic fields that can alter the insects’ behavior and ability to learn. In the lab, honeybees (Apis mellifera) were more aggressive toward other bees after being exposed to electromagnetic fields, or EMFs, at strengths similar to what they might experience at ground level under electricity transmission […] More

  • in

    Humpback whales use their flippers and bubble ‘nets’ to catch fish

    Humpback whales need to eat a lot every day, and some even use their flippers to help snag a big mouthful of fish. Researchers filmed humpbacks (Megaptera novaeangliae) hunting with this tactic, called pectoral herding, off the Alaskan coast. It’s the first time that this behavior has been documented in such detail, the team reports […] More