More stories

  • in

    The Tonga eruption may have spawned a tsunami as tall as the Statue of Liberty

    The massive Tonga eruption generated a set of planet-circling tsunamis that may have started out as a single mound of water roughly the height of the Statue of Liberty.

    What’s more, the explosive eruption triggered an immense atmospheric shock wave that spawned a second set of especially fast-moving tsunamis, a rare phenomenon that can complicate early warnings for these oft-destructive waves, researchers report in the October Ocean Engineering.

    As the Hunga Tonga–Hunga Ha’apai undersea volcano erupted in the South Pacific in January, it displaced a large volume of water upward, says Mohammad Heidarzadeh, a civil engineer at the University of Bath in England (SN: 1/21/22). The water in that colossal mound later “ran downhill,” as fluids tend to do, to generate the initial set of tsunamis.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    To estimate the original size of the mound, Heidarzadeh and his team used computer simulations, as well as data from deep-ocean instruments and coastal tide gauges within about 1,500 kilometers of the eruption, many of them in or near New Zealand. The arrival times of tsunami waves, as well as their sizes, at those locations were key pieces of data, Heidarzadeh says.

    The team analyzed nine possibilities for the initial wave, each of which was shaped like a baseball pitcher’s mound and had a distinct height and diameter. The best fit to the real-world data came from a mound of water a whopping 90 meters tall and 12 kilometers in diameter, the researchers report.

    That initial wave would have contained an estimated 6.6 cubic kilometers of water. “This was a really large tsunami,” Heidarzadeh says.

    Despite starting out about nine times as tall as the tsunami that devastated the Tohoku region of Japan in 2011, the Tongan tsunamis killed only five people and caused about $90 million in damage, largely because of their remote source (SN: 2/10/12).

    Another unusual aspect of the Tongan eruption is the second set of tsunamis generated by a strong atmospheric pressure wave.

    That pressure pulse resulted from a steam explosion that occurred when a large volume of seawater infiltrated the hot magma chamber beneath the erupting volcano. As the pressure wave raced across the ocean’s surface at speeds exceeding 300 meters per second, it pushed water ahead of it, creating tsunamis, Heidarzadeh explains.

    The eruption of the Hunga Tonga-Hunga Ha’apai volcano also triggered an atmospheric pressure wave that in turn generated tsunamis that traveled quicker than expected.NASA Earth Observatory

    Along many coastlines, including some in the Indian Ocean and Mediterranean Sea, these pressure wave–generated tsunamis arrived hours ahead of the gravity-driven waves spreading from the 90-meter-tall mound of water. Gravity-driven tsunami waves typically travel across the deepest parts of the ocean, far from continents, at speeds between 100 and 220 meters per second. When the waves reach shallow waters near shore, the waves slow, water stacks up and then strikes shore, where destruction occurs.

    Pressure wave–generated tsunamis have been reported for only one other volcanic eruption: the 1883 eruption of Krakatau in Indonesia (SN: 8/27/83).

    Those quicker-than-expected arrival times — plus the fact that the pressure-wave tsunamis for the Tongan eruption were comparable in size with the gravity-driven ones — could complicate early warnings for these tsunamis. That’s concerning, Heiderzadeh says.

    One way to address the issue would be to install instruments that measure atmospheric pressure with the deep-sea equipment already in place to detect tsunamis, says Hermann Fritz, a tsunami scientist at Georgia Tech in Atlanta.

    With that setup, scientists would be able to discern if a passing tsunami is associated with a pressure pulse, thus providing a clue in real time about how fast the tsunami wave might be traveling. More

  • in

    The Arctic is warming even faster than scientists realized

    The Arctic is heating up at a breakneck speed compared with the rest of Earth. And new analyses show that the region is warming even faster than scientists thought. Over the last four decades, the average Arctic temperature increased nearly four times as fast as the global average, researchers report August 11 in Communications Earth & Environment.

    And that’s just on average. Some parts of the Arctic Ocean, such as the Barents Sea between Russia and Norway’s Svalbard archipelago, are warming as much as seven times as fast, meteorologist Mika Rantanen of the Finnish Meteorological Institute in Helsinki and colleagues found. Previous studies have tended to say that the Arctic’s average temperature is increasing two to three times as fast as elsewhere, as humans continue causing the climate to change.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    To calculate the true pace of the accelerated warming, a phenomenon called Arctic amplification, the researchers averaged four sets of satellite data from 1979 to 2021 (SN: 7/1/20). Globally, the average temperature increase over that time was about 0.2 degrees Celsius per decade. But the Arctic was warming by about 0.75 degrees C per decade.

    Even the best climate models are not doing a great job of reproducing that warming, Rantanen and colleagues say. The inability of the models to realistically simulate past Arctic amplification calls into question how well the models can project future changes there.

    It’s not clear where the problem lies. One issue may be that the models are struggling with correctly simulating the sensitivity of Arctic temperatures to the loss of sea ice. Vanishing snow and ice, particularly sea ice, are one big reason why Arctic warming is on hyperspeed. The bright white snow and ice create a reflective shield that bounces incoming radiation from the sun back into space. But open ocean waters or bare rocks absorb that heat, raising the temperature. More

  • in

    50 years ago, a new theory of Earth’s core began solidifying

    How the Earth got its core – Science News, July 1, 1972

    In the beginning, scientists believe there was an interstellar gas cloud of all the elements comprising the Earth. A billion or so years later, the Earth was a globe of concentric spheres with a solid iron inner core, a liquid iron outer core and a liquid silicate mantle…. The current theory is that the primeval cloud’s materials accreted … and that sometime after accretion, the iron, melted by radioactive heating, sank toward the center of the globe…. Now another concept is gaining ground: that the Earth may have accreted … with core formation and accretion occurring simultaneously.

    Update

    Most scientists now agree that the core formed as materials that make up Earth collided and glommed together and that the process was driven by heat from the smashups. The planet’s heart is primarily made of iron, nickel and some oxygen, but what other elements may dwell there and in what forms remains an open question. Recently, scientists proposed the inner core could be superionic, with liquid hydrogen flowing through an iron and silicon lattice (SN: 3/12/22, p. 12). More

  • in

    Scientists are racing to save the Last Ice Area, an Arctic Noah’s Ark

    It started with polar bears.

    In 2012, polar bear DNA revealed that the iconic species had faced extinction before, likely during a warm period 130,000 years ago, but had rebounded. For researchers, the discovery led to one burning question: Could polar bears make a comeback again?

    Studies like this one have emboldened an ambitious plan to create a refuge where Arctic, ice-dependent species, from polar bears down to microbes, could hunker down and wait out climate change. For this, conservationists are pinning their hopes on a region in the Arctic dubbed the Last Ice Area — where ice that persists all summer long will survive the longest in a warming world.

    Here, the Arctic will take its last stand. But how long the Last Ice Area will hold on to its summer sea ice remains unclear. A computer simulation released in September predicts that the Last Ice Area could retain its summer sea ice indefinitely if emissions from fossil fuels don’t warm the planet more than 2 degrees Celsius above preindustrial levels, which is the goal set by the 2015 Paris Climate Agreement (SN: 12/12/15). But a recent report by the United Nations found that the climate is set to warm 2.7 degrees Celsius by 2100 under current pledges to reduce emissions, spelling the end of the Arctic’s summer sea ice (SN: 10/26/21).

    Nevertheless, some scientists are hoping that humankind will rally to curb emissions and implement technology to capture carbon and other greenhouse gases, which could reduce, or even reverse, the effects of climate change on sea ice. In the meantime, the Last Ice Area could buy ice-dependent species time in the race against extinction, acting as a sanctuary where they can survive climate change, and maybe one day, make their comeback.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Ecosystem of the frozen sea

    The Last Ice Area is a vast floating landscape of solid ice extending from the northern coast of Greenland to Canada’s Banks Island in the west. This region, roughly the length of the West Coast of the United States, is home to the oldest and thickest ice in the Arctic, thanks to an archipelago of islands in Canada’s far north that prevents sea ice from drifting south and melting in the Atlantic.

    As sea ice from others part of the Arctic rams into this natural barrier, it piles up, forming long towering ice ridges that run for kilometers across the frozen landscape. From above, the area appears desolate. “It’s a pretty quiet place,” says Robert Newton, an oceanographer at Columbia University and coauthor of the recent sea ice model, published September 2 in Science. “A lot of the life is on the bottom of the ice.”

    The muddy underbelly of icebergs is home to plankton and single-celled algae that evolved to grow directly on ice. These species form the backbone of an ecosystem that feeds everything from tiny crustaceans all the way up to beluga whales, ringed seals and polar bears.

    These plankton and algae species can’t survive without ice. So as summer sea ice disappears across the Arctic, the foundation of this ecosystem is literally melting away. “Much of the habitat Arctic species depend on will become uninhabitable,” says Brandon Laforest, an Arctic expert at World Wildlife Fund Canada in Montreal. “There is nowhere else for these species to go. They’re literally being squeezed into the Last Ice Area.”

    The Last Ice Area extends across national borders, making it especially challenging to protect the last summer sea ice in the Arctic. The extent of the ice is predicted to shrink considerably by 2039.WWF CanadaThe Last Ice Area extends across national borders, making it especially challenging to protect the last summer sea ice in the Arctic. The extent of the ice is predicted to shrink considerably by 2039.WWF Canada

    The last stronghold of summer ice provides an opportunity to create a floating sanctuary —an Arctic ark if you will — for the polar bears and many other species that depend on summer ice to survive. For over a decade, WWF Canada and a coalition of researchers and Indigenous communities have lobbied for the area to be protected from another threat: development by industries that may be interested in the region’s oil and mineral resources.

    “The tragedy would be if we had an area where these animals could survive this bottleneck, but they don’t because it’s been developed commercially,” Newton says.

    But for Laforest, protecting the Last Ice Area is not only a question of safeguarding arctic creatures. Sea ice is also an important tool in climate regulation, as the white surface reflects sunlight back into space, helping to cool the planet. In a vicious cycle, losing sea ice helps speed up warming, which in turn melts more ice.

    And for the people who call the Arctic home, sea ice is crucial for food security, transportation and cultural survival, wrote Inuit Circumpolar Council Chair Okalik Eegeesiak in a 2017 article for the United Nations. “Our entire cultures and identity are based on free movement on land, sea ice and the Arctic Ocean,” Eegeesiak wrote. “Our highway is sea ice.” 

    The efforts of these groups have borne some fruit. In 2019, the Canadian government moved to set aside nearly a third of the Last Ice Area as protected spaces called marine preserves. Until 2024, all commercial activity within the boundaries of the preserves is forbidden, with provisions for Indigenous peoples. Conservationists are now asking these marine preserves to be put under permanent protection.

    Rifts in the ice

    However, there are some troubling signs that the sea ice in the region is already precarious. Most worrisome was the appearance in May 2020 of a Rhode Island—sized rift in the ice at the heart of the Last Ice Area. Kent Moore, a geophysicist at the University of Toronto, says that these unusual events may become more frequent as the ice thins. This suggests that the Last Ice Area may not be as resilient as we thought, he says.  

    This is something that worries Laforest. He and others are skeptical that reversing climate change and repopulating the Arctic with ice-dependent species will be possible. “I would love to live in a world where we eventually reverse warming and promote sea ice regeneration,” he says. “But stabilization seems like a daunting task on its own.”

    Still, hope remains. “All the models show that if you were to bring temperatures back down, sea ice will revert to its historical pattern within several years,” says Newton.

    To save the last sea ice — and the creatures that depend on it — removing greenhouse gases from the atmosphere will be essential, says oceanographer Stephanie Pfirman of Arizona State University in Tempe, who coauthored the study on sea ice with Newton. Technology to capture carbon, and prevent more carbon from entering the atmosphere, already exists. The largest carbon capture plant is in Iceland, but projects like that one have yet to be implemented on a major scale.

    Without such intervention, the Arctic is set to lose the last of its summer ice before the end of the century. It would mean the end of life on the ice. But Pfirman, who suggested making the Last Ice Area a World Heritage Site in 2008, says that humankind has undergone big economic and social changes — like the kind needed to reduce emissions and prevent warming — in the past. “I was in Germany when the [Berlin] wall came down, and people hadn’t expected that to happen,” she says.

    Protecting the Last Ice Area is about buying time to protect sea ice and species, says Pfirman. The longer we can hold on to summer sea ice, she says, the better chance we have at bringing arctic species —from plankton to polar bears — back from the brink.    More

  • in

    Earth’s lower atmosphere is rising due to climate change

    Global temperatures are rising and so, it seems, is part of the sky.

    Atmosphere readings collected by weather balloons in the Northern Hemisphere over the last 40 years reveal that climate change is pushing the upper boundary of the troposphere — the slice of sky closest to the ground — steadily upward at a rate of 50 to 60 meters per decade, researchers report November 5 in Science Advances.

    Temperature is the driving force behind this change, says Jane Liu, an environmental scientist at the University of Toronto. The troposphere varies in height around the world, reaching as high as 20 kilometers in the tropics and as low as seven kilometers near the poles. During the year, the upper boundary of the troposphere — called the tropopause — naturally rises and falls with the seasons as air expands in the heat and contracts in the cold. But as greenhouse gases trap more and more heat in the atmosphere, the troposphere is expanding higher into the atmosphere (SN: 10/26/21).

    Liu and her colleagues found that the tropopause rose an average of about 200 meters in height from 1980 to 2020. Nearly all weather occurs in the troposphere, but it’s unlikely that this shift will have on a big effect on weather, the researchers say. Still, this research is an important reminder of the impact of climate change on our world, Liu says.

    “We see signs of global warming around us, in retreating glaciers and rising sea levels,” she says. “Now, we see it in the height of the troposphere.” More

  • in

    Earth is reflecting less light. It’s not clear if that’s a trend

    The amount of sunlight that Earth reflects back into space — measured by the dim glow seen on the dark portions of a crescent moon’s face — has decreased measurably in recent years. Whether the decline in earthshine is a short-term blip or yet another ominous sign for Earth’s climate is up in the air, scientists suggest.

    Our planet, on average, typically reflects about 30 percent of the sunlight that shines on it. But a new analysis bolsters previous studies suggesting that Earth’s reflectance has been declining in recent years, says Philip Goode, an astrophysicist at Big Bear Solar Observatory in California. From 1998 to 2017, Earth’s reflectance declined about 0.5 percent, the team reported in the Sept. 8 Geophysical Research Letters.

    Using ground-based instruments at Big Bear, Goode and his colleagues measured earthshine — the light that reflects off our planet, to the moon and then back to Earth — from 1998 to 2017. Because earthshine is most easily gauged when the moon is a slim crescent and the weather is clear, the team collected a mere 801 data points during those 20 years, Goode and his colleagues report.

    Much of the decrease in reflectance occurred during the last three years of the two-decade period the team studied, Goode says. Previous analyses of satellite data, he and his colleagues note, hint that the drop in reflectance stems from warmer temperatures along the Pacific coasts of North and South America, which in turn reduced low-altitude cloud cover and exposed the underlying, much darker and less reflective seas.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    “Whether or not this is a long-term trend [in Earth’s reflectance] is yet to be seen,” says Edward Schwieterman, a planetary scientist at University of California, Riverside, who was not involved in the new analysis. “This strengthens the argument for collecting more data,” he says.

    Decreased cloudiness over the eastern Pacific isn’t the only thing trimming Earth’s reflectance, or albedo, says Shiv Priyam Raghuraman, an atmospheric scientist at Princeton University. Many studies point to a long-term decline in sea ice (especially in the Arctic), ice on land, and tiny pollutants called aerosols — all of which scatter sunlight back into space to cool Earth.

    With ice cover declining, Earth is absorbing more radiation. The extra radiation absorbed by Earth in recent decades goes toward warming the oceans and melting more ice, which can contribute to even more warming via a vicious feedback loop, says Schwieterman.

    Altogether, Goode and his colleagues estimate, the decline in Earth’s reflectance from 1998 to 2017 means that each square meter of our planet’s surface is absorbing, on average, an extra 0.5 watts of energy. For comparison, the researchers note in their study, planet-warming greenhouse gases and other human activity over the same period boosted energy input to Earth’s surface by an estimated 0.6 watts of energy per square meter. That means the decline in Earth’s reflectance has, over that 20-year period, almost doubled the warming effect our planet experienced. More

  • in

    A volcano-induced rainy period made Earth’s climate dinosaur-friendly

    The biggest beasts to walk the Earth had humble beginnings. The first dinosaurs were cat-sized, lurking in the shadows, just waiting for their moment. That moment came when four major pulses of volcanic activity changed the climate in a geologic blink of an eye, causing a 2-million-year-long rainy spell that coincided with dinos rising to dominance, a new study suggests.

    Clues found in sediments buried deep beneath an ancient lake basin in China link the volcanic eruptions with climate swings and environmental changes that created a globe-spanning hot and humid oasis in the middle of the hot and dry Triassic Period, researchers report in the Oct. 5 Proceedings of the National Academy of Sciences. During this geologically brief rainy period 234 million to 232 million years ago, called the Carnian Pluvial Episode, dinosaurs started evolving into the hulking and diverse creatures that would dominate the landscape for the next 166 million years.

    Previous research has noted the jump in global temperatures, humidity and rainfall during this time period, as well as a changeover in land and sea life. But these studies lacked detail on what caused these changes, says Jason Hilton, a paleobotanist at the University of Birmingham in England.

    So Hilton and his colleagues turned to a several-hundred-meter-long core of lake-bottom sediments drawn from the Jiyuan Basin for answers. The core contained four distinct layers of sediments that included volcanic ash that the team dated to between 234 million and 232 million years ago, matching the timing of the Carnian Pluvial Episode. Within those layers, the team also found mercury, a proxy for volcanic eruptions. “Mercury entered the lake from a mix of atmospheric pollution, volcanic ash and also being washed in from surrounding land that had elevated levels of mercury from volcanism,” Hilton says.

    The rock record from 234 million to 232 million years ago, captured in these cores from an ancient lakebed in northern China, shows signs of wet weather almost everywhere. The cores also show evidence of volcanic activity. Jing Lu

    Further evidence for the link between volcanism and environmental change during the Carnian Pluvial Episode came from corresponding layers in the core that showed different types of carbon, indicating four massive releases of carbon dioxide into the atmosphere. Finally, microfossils and pollens changed within the same core section, from species that prefer drier climates to ones that tend to grow in warm and humid climates.

    The reconstructed history suggests that the volcanic pulses injected huge amounts of CO₂ into the atmosphere, says coauthor Jacopo Dal Corso, a geologist at the University of Leeds in England. That boosted temperatures and intensified the hydrologic cycle, enhancing rainfall and increasing runoff into lakes, he says. At the same time, terrestrial plants evolved, with humidity-loving flora becoming predominant. As the rains created wet environments, turtles, large amphibians called metoposaurids — and dinosaurs — began to thrive.

    Together, these diverse lines of evidence reveal that the Carnian Pluvial Episode was actually four distinct pulses of significant environmental change — each triggered by massive volcanic eruptions, Dal Corso says.

    Pollens, spores and algae collected from the core sample from the Carnian Pluvial Episode reveal a change from more arid-loving plants and animals to more humid-loving plants and animals.Peixin Zhang

    The mercury and carbon data together suggest the increase in mercury came from a “major source of volcanism that was capable of impacting the global carbon cycle,” rather than local eruptions, the team writes. That volcanism likely came from the Wrangellia Large Igneous Province eruption in what is now British Columbia and Alaska, which has previously, but tenuously, been linked to the Carnian Pluvial Episode. If true, it means the Wrangellia eruption occurred in pulses, rather than one sustained eruption.  

    This paper marks the “first time that mercury and carbon isotope data are so well correlated across the Carnian Pluvial Episode,” says Andrea Marzoli, an igneous petrologist at the University of Padua in Italy who has studied Wrangellia but was not involved in this research.  “The authors make a strong argument in favor of volcanically induced global climate change pulses.” However, Marzoli notes, “the link to Wrangellia is still weak, simply because we don’t know the age of Wrangellia.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Alastair Ruffell, a forensic geologist at Queen’s University Belfast in Ireland not involved in this study, agrees, saying he’d like to see more evidence of cause and effect between Wrangellia and the environmental changes. This study offers some of the best proxies and data from terrestrial sources to date, but more terrestrial records of the Carnian Pluvial Episode are needed, he says, to “understand what this actually looked like on the ground.” 

    The climate changes marked a tipping point for life that couldn’t adjust, and those groups went extinct. Animals like dinosaurs and plants like cycads, says Ruffell, were “waiting in the wings” to seize their opportunity. A similar cycle of volcanic activity and environmental change starting about 184 million years ago may have paved the way for the biggest of all dinos, long-necked sauropods, to lumber into dominance (SN: 11/17/20). More