More stories

  • in

    Species may swim thousands of kilometers to escape ocean heat waves

    When an intense heat wave strikes a patch of ocean, overheated marine animals may have to swim thousands of kilometers to find cooler waters, researchers report August 5 in Nature.
    Such displacement, whether among fish, whales or turtles, can hinder both conservation efforts and fishery operations. “To properly manage those species, we need to understand where they are,” says Michael Jacox, a physical oceanographer with the National Oceanographic and Atmospheric Administration based in Monterey, Calif.
    Marine heat waves —  defined as at least five consecutive days of unusually hot water for a given patch of ocean — have become increasingly common over the past century (SN: 4/10/18). Climate change has amped up the intensity of some of the most famous marine heat waves of recent years, such as the Pacific Ocean Blob from 2015 to 2016 and scorching waters in the Tasman Sea in 2017 (SN: 12/14/17; SN: 12/11/18).
    “We know that these marine heat waves are having lots of effects on the ecosystem,” Jacox says. For example, researchers have documented how the sweltering waters can bleach corals and wreak havoc on kelp forests. But the impacts on mobile species such as fish are only beginning to be studied (SN: 1/15/20).

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    “We have seen species appearing far north of where we expect them,” Jacox says. For example, in 2015, the Blob drove hammerhead sharks — which normally stay close to the tropics, near Baja California in Mexico — to shift their range at least hundreds of kilometers north, where they were observed off the coast of Southern California.
    To see how far a mobile ocean dweller would need to flee to escape the heat, Jacox and colleagues compared ocean temperatures around the globe. First, they examined surface ocean temperatures from 1982 to 2019 compiled by NOAA from satellites, buoys and shipboard measurements. Then, for the same period, they identified marine heat waves occurring around the world, where water temperatures for a region lingered in the highest 10 percent ever recorded for that place and that time of year. Finally, they calculated how far a swimmer in an area with a heat wave has had to go to reach cooler waters, a distance the team dubs “thermal displacement.”

    In higher-latitude regions, such as the Tasman Sea, relief tended to be much closer, within a few tens of kilometers of the overheated patch, the researchers found. So while ocean heat waves in that region might spell doom for firmly rooted corals and kelp, mobile species might fare better. “We were surprised that the displacements were so small,” Jacox says.
    But in the tropics, where ocean temperatures are more uniform, species may have had to travel thousands of kilometers to escape the heat.  
    Projecting how species might move around in the future due to marine heat waves gets increasingly complicated, the researchers found. That’s because over the next few decades, climate change is anticipated to cause not just an increase in frequency and intensity of marine heat waves, but also warming of all of Earth’s ocean waters (SN: 9/25/19). Furthermore, that rate of warming will vary from place to place. As a result, future thermal displacement could increase in some parts of the ocean relative to today, and decrease in others, writes marine ecologist Mark Payne of the Technical University of Denmark in Copenhagen, in a commentary in the same issue of Nature.
    That complexity highlights the task ahead for researchers trying to anticipate changes across ocean ecosystems as the waters warm, says Lewis Barnett, a Seattle-based NOAA fish biologist, who was not involved in the study. The new work provides important context for data being collected on fish stocks. For example, surveys of the Gulf of Alaska in 2017 noted a large decline in the abundance of valuable Pacific cod, now known to be linked to the Blob heatwave that had ended the year before.
    But there’s a lot more work to be done, Barnett says.
    The study focuses on surface ocean temperatures, but ocean conditions and dynamics are different in the deep ocean, he notes. Some species, too, move more easily between water depths than others. And heat tolerance also varies from species to species. Biologists are racing to understand these differences, and how hot waters can affect the life cycles and distributions of many different animals.
    The effects of marine heat waves might be ephemeral compared with the impacts of long-term climate change. But these extreme events offer a peek into the future, says Malin Pinsky, a marine ecologist at Rutgers University in New Brunswick, N.J., who was not involved in the study. “We can use these heat waves as lessons for how we’ll need to adapt.” More

  • in

    These ancient seafloor microbes woke up after over 100 million years

    Even after 100 million years buried in the seafloor, some microbes can wake up. And they’re hungry.
    An analysis of seafloor sediments dating from 13 million to nearly 102 million years ago found that nearly all of the microbes in the sediments were only dormant, not dead. When given food, even the most ancient microbes revived themselves and multiplied, researchers report July 28 in Nature Communications.
    Scientists have pondered how long energy-starved microbes might survive within the seafloor. That such ancient microbes can still be metabolically active, the researchers say, just goes to show that scientists are still fathoming the most extreme limits to life on Earth.
    The microbes’ patch of seafloor lies beneath a kind of ocean desert, part of a vast abyssal plain about 3,700 to 5,700 meters below sea level. Researchers, led by microbiologist Yuki Morono of the Japan Agency for Marine-Earth Science and Technology in Kochi, examined sediments collected in 2010 from part of the abyssal plain beneath the South Pacific Gyre. That region of the Pacific Ocean contains few nutrients that might fuel phytoplankton blooms and thereby support a cascade of ocean life. As a result, very little organic matter makes its way down through the water to settle on the seafloor.
    The extremely slow accumulation of organic material and other sediments in this region does allow oxygen in the water to seep deep into the sediments. So Morono and colleagues wondered whether any aerobic, or oxygen-liking, microbes found there might be revivable. After “feeding” microbes from the collected sediments with nutrients including carbon and nitrogen, the team tracked the organisms’ activity based on what was consumed.
    The aerobic microbes in the sediments turned out to be a highly diverse group, consisting mostly of different types of bacteria belonging to large groups such as Alphaproteobacteria and Gammaproteobacteria (SN: 9/14/17). Nearly all the microbes responded quickly to the food. By 68 days after the experiment’s start, the total number of microbial cells had increased by four orders of magnitude, from as little as about 100 cells per cubic centimeter to 1 million cells per cubic centimeter.
    Those increases weren’t just among the youngest microbes. Even in the sediment sample containing the most elderly — about 101.5 million years old — up to 99.1 percent of the microbes were revived. More

  • in

    Deep-sea mining may damage underwater ecosystems for decades

    Microbe communities living in the seafloor off Peru haven’t bounced back from a deep-sea mining experiment 26 years ago. The populations are still reduced by 30 percent in this part of the South Pacific Ocean, researchers report April 29 in Science Advances. From 1989 to 1996, the DISturbance and reCOLonization, or DISCOL, experiment plowed grooves […] More

  • in

    The Deepwater Horizon oil spill spread much farther than once thought

    Nearly a decade after the Deepwater Horizon oil spill in the Gulf of Mexico, computer simulations suggest that the toxic pollution extended much farther than satellite images first indicated.   Those images, taken after the spill dumped nearly 800 million liters of oil into Gulf waters, helped to determine which areas would be temporarily closed […] More

  • in

    Noise pollution from ships may scare Arctic cod from feeding grounds

    The noise of shipping vessels traveling through northern Canadian waters is causing Arctic cod to sacrifice much of their foraging and feeding in order to flee the area until ships move away, researchers report. The findings — the first to gauge how shipping noise could affect Arctic fish — are cause for concern as climate […] More

  • in

    Stealthy robots with microphones could improve maps of ocean noise

    Moving slowly and stealthily through the Pacific Ocean, a robotic glider with a microphone captured a cacophony of sounds from ships, whales and underwater explosions. The glider’s journey, across 458 kilometers off the Washington and Oregon coast and down to 650 meters, demonstrates that gliders could be effective tools to help map ocean noise levels, […] More