More stories

  • in

    Giant lasers help re-create supernovas’ explosive, mysterious physics

    When one of Hye-Sook Park’s experiments goes well, everyone nearby knows. “We can hear Hye-Sook screaming,” she’s heard colleagues say.
    It’s no surprise that she can’t contain her excitement. She’s getting a closeup look at the physics of exploding stars, or supernovas, a phenomenon so immense that its power is difficult to put into words.
    Rather than studying these explosions from a distance through telescopes, Park, a physicist at Lawrence Livermore National Laboratory in California, creates something akin to these paroxysmal blasts using the world’s highest-energy lasers.
    About 10 years ago, Park and colleagues embarked on a quest to understand a fascinating and poorly understood feature of supernovas: Shock waves that form in the wake of the explosions can boost particles, such as protons and electrons, to extreme energies.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    “Supernova shocks are considered to be some of the most powerful particle accelerators in the universe,” says plasma physicist Frederico Fiuza of SLAC National Accelerator Laboratory in Menlo Park, Calif., one of Park’s collaborators.
    Some of those particles eventually slam into Earth, after a fast-paced marathon across cosmic distances. Scientists have long puzzled over how such waves give energetic particles their massive speed boosts. Now, Park and colleagues have finally created a supernova-style shock wave in the lab and watched it send particles hurtling, revealing possible new hints about how that happens in the cosmos.
    Bringing supernova physics down to Earth could help resolve other mysteries of the universe, such as the origins of cosmic magnetic fields. And there’s a more existential reason physicists are fascinated by supernovas. These blasts provide some of the basic building blocks necessary for our existence. “The iron in our blood comes from supernovae,” says plasma physicist Carolyn Kuranz of the University of Michigan in Ann Arbor, who also studies supernovas in the laboratory. “We’re literally created from stars.”
    Lucky star
    As a graduate student in the 1980s, Park worked on an experiment 600 meters underground in a working salt mine beneath Lake Erie in Ohio. Called IMB for Irvine-Michigan-Brookhaven, the experiment wasn’t designed to study supernovas. But the researchers had a stroke of luck. A star exploded in a satellite galaxy of the Milky Way, and IMB captured particles catapulted from that eruption. Those messengers from the cosmic explosion, lightweight subatomic particles called neutrinos, revealed a wealth of new information about supernovas.
    But supernovas in our cosmic vicinity are rare. So decades later, Park isn’t waiting around for a second lucky event.
    Physicist Hye-Sook Park, shown as a graduate student in the 1980s (left) and in a recent photo (right), uses powerful lasers to study astrophysics.from left: John Van der Velde; Lanie L. Rivera/Lawrence Livermore National Laboratory
    Instead, her team and others are using extremely powerful lasers to re-create the physics seen in the aftermath of supernova blasts. The lasers vaporize a small target, which can be made of various materials, such as plastic. The blow produces an explosion of fast-moving plasma, a mixture of charged particles, that mimics the behavior of plasma erupting from supernovas.
    The stellar explosions are triggered when a massive star exhausts its fuel and its core collapses and rebounds. Outer layers of the star blast outward in an explosion that can unleash more energy than will be released by the sun over its entire 10-billion-year lifetime. The outflow has an unfathomable 100 quintillion yottajoules of kinetic energy (SN: 2/8/17, p. 24).
    Supernovas can also occur when a dead star called a white dwarf is reignited, for example after slurping up gas from a companion star, causing a burst of nuclear reactions that spiral out of control (SN: 4/30/16, p. 20).
    Supernova remnants like W49B (shown in X-ray, radio and infrared light) accelerate electrons and protons to high energies in shock waves.NASA, CXC, MIT L. Lopez et al (X-ray), Palomar (Infrared), VLA/NRAO/NSF (Radio)
    In both cases, things really get cooking when the explosion sends a blast of plasma careening out of the star and into its environs, the interstellar medium — essentially, another ocean of plasma particles. Over time, a turbulent, expanding structure called a supernova remnant forms, begetting a beautiful light show, tens of light-years across, that can persist in the sky for many thousands of years after the initial explosion. It’s that roiling remnant that Park and colleagues are exploring.
    Studying supernova physics in the lab isn’t quite the same thing as the real deal, for obvious reasons. “We cannot really create a supernova in the laboratory, otherwise we would be all exploded,” Park says.
    In lieu of self-annihilation, Park and others focus on versions of supernovas that are scaled down, both in size and in time. And rather than reproducing the entirety of a supernova all at once, physicists try in each experiment to isolate interesting components of the physics taking place. Out of the immense complexity of a supernova, “we are studying just a tiny bit of that, really,” Park says.
    For explosions in space, scientists are at the mercy of nature. But in the laboratory, “you can change parameters and see how shocks react,” says astrophysicist Anatoly Spitkovsky of Princeton University, who collaborates with Park.
    The laboratory explosions happen in an instant and are tiny, just centimeters across. For example, in Kuranz’s experiments, the equivalent of 15 minutes in the life of a real supernova can take just 10 billionths of a second. And a section of a stellar explosion larger than the diameter of Earth can be shrunk down to 100 micrometers. “The processes that occur in both of those are very similar,” Kuranz says. “It blows my mind.”
    [embedded content]
    Powerful, mysterious stellar explosions are difficult to understand from afar, so researchers have figured out how to re-create supernovas’ extreme physics in the lab and study how outbursts seed the cosmos with elements and energetic particles.
    Laser focus
    To replicate the physics of a supernova, laboratory explosions must create an extreme environment. For that, you need a really big laser, which can be found in only a few places in the world, such as NIF, the National Ignition Facility at Lawrence Livermore, and the OMEGA Laser Facility at the University of Rochester in New York.
    At both places, one laser is split into many beams. The biggest laser in the world, at NIF, has 192 beams. Each of those beams is amplified to increase its energy exponentially. Then, some or all of those beams are trained on a small, carefully designed target. NIF’s laser can deliver more than 500 trillion watts of power for a brief instant, momentarily outstripping the total power usage in the United States by a factor of a thousand.
    A single experiment at NIF or OMEGA, called a shot, is one blast from the laser. And each shot is a big production. Opportunities to use such advanced facilities are scarce, and researchers want to have all the details ironed out to be confident the experiment will be a success.
    When a shot is about to happen, there’s a space-launch vibe. Operators monitor the facility from a control room filled with screens. When the time of the laser blast nears, a voice begins counting down: “Ten, nine, eight …”
    “When they count down for your shot, your heart is pounding,” says plasma physicist Jena Meinecke of the University of Oxford, who has worked on experiments at NIF and other laser facilities.
    At the moment of the shot, “you kind of want the Earth to shake,” Kuranz says. But instead, you might just hear a snap — the sound of the discharge from capacitors that store up huge amounts of energy for each shot.
    Then comes a mad dash to review the results and determine if the experiment has been successful. “It’s a lot of adrenaline,” Kuranz says.
    At the National Ignition Facility’s target chamber (shown during maintenance), 192 laser beams converge. The blasts produce plumes of plasma that can mimic some aspects of supernova remnants.Lawrence Livermore National Laboratory
    Lasers aren’t the only way to investigate supernova physics in the lab. Some researchers use intense bursts of electricity, called pulsed power. Others use small amounts of explosives to set off blasts. The various techniques can be used to understand different stages in supernovas’ lives.
    A real shocker
    Park brims with cosmic levels of enthusiasm, ready to erupt in response to a new nugget of data or a new success in her experiments. Re-creating some of the physics of a supernova in the lab really is as remarkable as it sounds, she says. “Other­wise I wouldn’t be working on it.” Along with Spitkovsky and Fiuza, Park is among more than a dozen scientists involved in the Astrophysical Collisionless Shock Experiments with Lasers collaboration, or ACSEL, the quest Park embarked upon a decade ago. Their focus is shock waves.
    The result of a violent input of energy, shock waves are marked by an abrupt increase in temperature, density and pressure. On Earth, shock waves cause the sonic boom of a supersonic jet, the clap of thunder in a storm and the damaging pressure wave that can shatter windows in the aftermath of a massive explosion. These shock waves form as air molecules slam into each other, piling up molecules into a high-density, high-pressure and high-temperature wave.
    In cosmic environments, shock waves occur not in air, but in plasma, a mixture of protons, electrons and ions, electrically charged atoms. There, particles may be diffuse enough that they don’t directly collide as they do in air. In such a plasma, the pileup of particles happens indirectly, the result of electromagnetic forces pushing and pulling the particles. “If a particle changes trajectory, it’s because it feels a magnetic field or an electric field,” says Gianluca Gregori, a physicist at the University of Oxford who is part of ACSEL.
    But exactly how those fields form and grow, and how such a shock wave results, has been hard to decipher. Researchers have no way to see the process in real supernovas; the details are too small to observe with telescopes.
    These shock waves, which are known as collisionless shock waves, fascinate physicists. “Particles in these shocks can reach amazing energies,” Spitkovsky says. In supernova remnants, particles can gain up to 1,000 trillion electron volts, vastly outstripping the several trillion electron volts reached in the biggest human-made particle accelerator, the Large Hadron Collider near Geneva. But how particles might surf supernova shock waves to attain their astounding energies has remained mysterious.

    Magnetic field origins
    To understand how supernova shock waves boost particles, you have to understand how shock waves form in supernova remnants. To get there, you have to understand how strong magnetic fields arise. Without them, the shock wave can’t form.
    Electric and magnetic fields are closely intertwined. When electrically charged particles move, they form tiny electric currents, which generate small magnetic fields. And magnetic fields themselves send charged particles corkscrewing, curving their trajectories. Moving magnetic fields also create electric fields.
    The result is a complex feedback process of jostling particles and fields, eventually producing a shock wave. “This is why it’s so fascinating. It’s a self-modulating, self-controlling, self-reproducing structure,” Spitkovsky says. “It’s like it’s almost alive.”
    All this complexity can develop only after a magnetic field forms. But the haphazard motions of individual particles generate only small, transient magnetic fields. To create a significant field, some process within a supernova remnant must reinforce and amplify the magnetic fields. A theoretical process called the Weibel instability, first thought up in 1959, has long been expected to do just that.
    In a supernova, the plasma streaming outward in the explosion meets the plasma of the interstellar medium. According to the theory behind the Weibel instability, the two sets of plasma break into filaments as they stream by one another, like two hands with fingers interlaced. Those filaments act like current-­carrying wires. And where there’s current, there’s a magnetic field. The filaments’ magnetic fields strengthen the currents, further enhancing the magnetic fields. Scientists suspected that the electromagnetic fields could then become strong enough to reroute and slow down particles, causing them to pile up into a shock wave.
    In 2015 in Nature Physics, the ACSEL team reported a glimpse of the Weibel instability in an experiment at OMEGA. The researchers spotted magnetic fields, but didn’t directly detect the filaments of current. Finally, this year, in the May 29 Physical Review Letters, the team reported that a new experiment had produced the first direct measurements of the currents that form as a result of the Weibel instability, confirming scientists’ ideas about how strong magnetic fields could form in supernova remnants.
    For that new experiment, also at OMEGA, ACSEL researchers blasted seven lasers each at two targets facing each other. That resulted in two streams of plasma flowing toward each other at up to 1,500 kilometers per second — a speed fast enough to circle the Earth twice in less than a minute. When the two streams met, they separated into filaments of current, just as expected, producing magnetic fields of 30 tesla, about 20 times the strength of the magnetic fields in many MRI machines.
    “What we found was basically this textbook picture that has been out there for 60 years, and now we finally were able to see it experimentally,” Fiuza says.
    Surfing a shock wave
    Once the researchers had seen magnetic fields, the next step was to create a shock wave and to observe it accelerating particles. But, Park says, “no matter how much we tried on OMEGA, we couldn’t create the shock.”
    They needed the National Ignition Facility and its bigger laser.
    There, the researchers hit two disk-shaped targets with 84 laser beams each, or nearly half a million joules of energy, about the same as the kinetic energy of a car careening down a highway at 60 miles per hour.
    Two streams of plasma surged toward each other. The density and temperature of the plasma rose where the two collided, the researchers reported in the September Nature Physics. “No doubt about it,” Park says. The group had seen a shock wave, specifically the collisionless type found in supernovas. In fact there were two shock waves, each moving away from the other.

    Learning the results sparked a moment of joyous celebration, Park says: high fives to everyone.
    “This is some of the first experimental evidence of the formation of these collisionless shocks,” says plasma physicist Francisco Suzuki-Vidal of Imperial College London, who was not involved in the study. “This is something that has been really hard to reproduce in the laboratory.”
    The team also discovered that electrons had been accelerated by the shock waves, reaching energies more than 100 times as high as those of particles in the ambient plasma. For the first time, scientists had watched particles surfing shock waves like the ones found in supernova remnants.
    But the group still didn’t understand how that was happening.
    In a supernova remnant and in the experiment, a small number of particles are accelerated when they cross over the shock wave, going back and forth repeatedly to build up energy. But to cross the shock wave, the electrons need some energy to start with. It’s like a big-wave surfer attempting to catch a massive swell, Fiuza says. There’s no way to catch such a big wave by simply paddling. But with the energy provided by a Jet Ski towing surfers into place, they can take advantage of the wave’s energy and ride the swell.
    A computer simulation of a shock wave (structure shown in blue) illustrates how electrons gain energy (red tracks are higher energy, yellow and green are lower).F. Fiuza/SLAC National Accelerator Laboratory
    “What we are trying to understand is: What is our Jet Ski? What happens in this environment that allows these tiny electrons to become energetic enough that they can then ride this wave and be accelerated in the process?” Fiuza says.
    The researchers performed computer simulations that suggested the shock wave has a transition region in which magnetic fields become turbulent and messy. That hints that the turbulent field is the Jet Ski: Some of the particles scatter in it, giving them enough energy to cross the shock wave.
    Wake-up call
    Enormous laser facilities such as NIF and OMEGA are typically built to study nuclear fusion — the same source of energy that powers the sun. Using lasers to compress and heat a target can cause nuclei to fuse with one another, releasing energy in the process. The hope is that such research could lead to fusion power plants, which could provide energy without emitting greenhouse gases or dangerous nuclear waste (SN: 4/20/13, p. 26). But so far, scientists have yet to get more energy out of the fusion than they put in — a necessity for practical power generation.
    So these laser facilities dedicate many of their experiments to chasing fusion power. But sometimes, researchers like Park get the chance to study questions based not on solving the world’s energy crisis, but on curiosity — wondering what happens when a star explodes, for example. Still, in a roundabout way, understanding supernovas could help make fusion power a reality as well, as that celestial plasma exhibits some of the same behaviors as the plasma in fusion reactors.
    At NIF, Park has also worked on fusion experiments. She has studied a wide variety of topics since her grad school days, from working on the U.S. “Star Wars” missile defense program, to designing a camera for a satellite sent to the moon, to looking for the sources of high-energy cosmic light flares called gamma-ray bursts. Although she is passionate about each topic, “out of all those projects,” she says, “this particular collisionless shock project happens to be my love.”
    Early in her career, back on that experiment in the salt mine, Park got a first taste of the thrill of discovery. Even before IMB captured neutrinos from a supernova, a different unexpected neutrino popped up in the detector. The particle had passed through the entire Earth to reach the experiment from the bottom. Park found the neutrino while analyzing data at 4 a.m., and woke up all her collaborators to tell them about it. It was the first time anyone working on the experiment had seen a particle coming up from below. “I still clearly remember the time when I was seeing something nobody’s seen,” Park recalls.
    Now, she says, she still gets the same feeling. Screams of joy erupt when she sees something new that describes the physics of unimaginably vast explosions.

    Trustworthy journalism comes at a price.

    Scientists and journalists share a core belief in questioning, observing and verifying to reach the truth. Science News reports on crucial research and discovery across science disciplines. We need your financial support to make it happen – every contribution makes a difference.

    Subscribe or Donate Now More

  • in

    LIGO and Virgo’s gravitational wave tally more than quadrupled in six months

    Earth is awash in gravitational waves.
    Over a six-month period, scientists captured a bounty of 39 sets of gravitational waves. The waves, which stretch and squeeze the fabric of spacetime, were caused by violent events such as the melding of two black holes into one.
    The haul was reported by scientists with the LIGO and Virgo experiments in several studies posted October 28 on a collaboration website and at arXiv.org. The addition brings the tally of known gravitational wave events to 50.
    The bevy of data, which includes sightings from April to October 2019, suggests that scientists’ gravitational wave–spotting skills have leveled up. Before this round of searching, only 11 events had been detected in the years since the effort began in 2015. Improvements to the detectors — two that make up the Advanced Laser Interferometer Gravitational-Wave Observatory, or LIGO, in the United States, and another, Virgo, in Italy — have dramatically boosted the rate of gravitational wave sightings.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    While colliding black holes produced most of the ripples, a few collisions seem to have involved neutron stars, ultradense nuggets of matter left behind when stars explode.
    Some of the events added to the gravitational wave register had been previously reported individually, including the biggest black hole collision spotted so far (SN: 9/2/20) and a collision between a black hole and an object that couldn’t be identified as either a neutron star or black hole (SN: 6/23/20).
    [embedded content]
    Gravitational waves are produced when two massive objects, such as black holes, spiral around one another and merge. These visualizations, which are based on computer simulations, show these merging objects for 38 of the 50 known gravitational wave events.
    What’s more, some of the coalescing black holes seem to be very large and spinning rapidly, says astrophysicist Richard O’Shaughnessy of the Rochester Institute of Technology in New York, a member of the LIGO collaboration. That’s something “really compelling in the data now that we hadn’t seen before,” he says. Such information might help reveal the processes by which black holes get partnered up before they collide (SN: 6/19/16).
    Scientists also used the smorgasbord of smashups to further check Albert Einstein’s theory of gravity, general relativity, which predicts the existence of gravitational waves. When tested with the new data — surprise, surprise — Einstein came up a winner. More

  • in

    The first room-temperature superconductor has finally been found

    It’s here: Scientists have reported the discovery of the first room-temperature superconductor, after more than a century of waiting.
    The discovery evokes daydreams of futuristic technologies that could reshape electronics and transportation. Superconductors transmit electricity without resistance, allowing current to flow without any energy loss. But all superconductors previously discovered must be cooled, many of them to very low temperatures, making them impractical for most uses.
    Now, scientists have found the first superconductor that operates at room temperature — at least given a fairly chilly room. The material is superconducting below temperatures of about 15° Celsius (59° Fahrenheit), physicist Ranga Dias of the University of Rochester in New York and colleagues report October 14 in Nature.
    The team’s results “are nothing short of beautiful,” says materials chemist Russell Hemley of the University of Illinois at Chicago, who was not involved with the research.
    However, the new material’s superconducting superpowers appear only at extremely high pressures, limiting its practical usefulness.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Dias and colleagues formed the superconductor by squeezing carbon, hydrogen and sulfur between the tips of two diamonds and hitting the material with laser light to induce chemical reactions. At a pressure about 2.6 million times that of Earth’s atmosphere, and temperatures below about 15° C, the electrical resistance vanished.
    That alone wasn’t enough to convince Dias. “I didn’t believe it the first time,” he says. So the team studied additional samples of the material and investigated its magnetic properties.
    Superconductors and magnetic fields are known to clash — strong magnetic fields inhibit superconductivity. Sure enough, when the material was placed in a magnetic field, lower temperatures were needed to make it superconducting. The team also applied an oscillating magnetic field to the material, and showed that, when the material became a superconductor, it expelled that magnetic field from its interior, another sign of superconductivity.
    The scientists were not able to determine the exact composition of the material or how its atoms are arranged, making it difficult to explain how it can be superconducting at such relatively high temperatures. Future work will focus on describing the material more completely, Dias says.
    When superconductivity was discovered in 1911, it was found only at temperatures close to absolute zero (−273.15° C). But since then, researchers have steadily uncovered materials that superconduct at higher temperatures. In recent years, scientists have accelerated that progress by focusing on hydrogen-rich materials at high pressure.
    In 2015, physicist Mikhail Eremets of the Max Planck Institute for Chemistry in Mainz, Germany, and colleagues squeezed hydrogen and sulfur to create a superconductor at temperatures up to −70° C (SN: 12/15/15). A few years later, two groups, one led by Eremets and another involving Hemley and physicist Maddury Somayazulu, studied a high-pressure compound of lanthanum and hydrogen. The two teams found evidence of superconductivity at even higher temperatures of −23° C and −13° C, respectively, and in some samples possibly as high as 7° C (SN: 9/10/18).
    The discovery of a room-temperature superconductor isn’t a surprise. “We’ve been obviously heading toward this,” says theoretical chemist Eva Zurek of the University at Buffalo in New York, who was not involved with the research. But breaking the symbolic room-temperature barrier is “a really big deal.”
    If a room-temperature superconductor could be used at atmospheric pressure, it could save vast amounts of energy lost to resistance in the electrical grid. And it could improve current technologies, from MRI machines to quantum computers to magnetically levitated trains. Dias envisions that humanity could become a “superconducting society.”
    But so far scientists have created only tiny specks of the material at high pressure, so practical applications are still a long way off.
    Still, “the temperature is not a limit anymore,” says Somayazulu, of Argonne National Laboratory in Lemont, Ill., who was not involved with the new research. Instead, physicists now have a new aim: to create a room-temperature superconductor that works without putting on the squeeze, Somayazulu says. “That’s the next big step we have to do.”

    Trustworthy journalism comes at a price.

    Scientists and journalists share a core belief in questioning, observing and verifying to reach the truth. Science News reports on crucial research and discovery across science disciplines. We need your financial support to make it happen – every contribution makes a difference.

    Subscribe or Donate Now More

  • in

    Fundamental constants place a new speed limit on sound

    Sound has a speed limit. Under normal circumstances, its waves can travel no faster than about 36 kilometers per second, physicists propose October 9 in Science Advances.
    Sound zips along at different rates in different materials — moving faster in water than in air for example. But under conditions found naturally on Earth, no material can host sound waves that outpace this ultimate limit, which is about 100 times the typical speed of sound traveling in air.
    The team’s reasoning rests on well-known equations of physics and mathematical relationships.  “Given the simplicity of the argument, it suggests that [the researchers] are putting their finger on something very deep,” says condensed matter physicist Kamran Behnia of École Supérieure de Physique et de Chimie Industrielles in Paris.
    The equation for the speed limit rests on fundamental constants, special numbers that rule the cosmos. One such number, the speed of light, sets the universe’s ultimate speed limit — nothing can go faster. Another, known as the fine-structure constant, determines the strength with which electrically charged particles push and pull one another. When combined in the right arrangement with another constant — the ratio of the masses of the proton and electron — these numbers yield sound’s speed limit.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Sound waves, which consist of the vibrations of atoms or molecules, travel through a material as one particle jostles another. The wave’s speed depends on various factors, including the types of chemical bonds holding the material together and how massive its atoms are.
    None of the sound speeds previously measured in a variety of liquids and solids surpass the proposed limit, condensed matter physicist Kostya Trachenko and colleagues found. The fastest speed measured, in diamond, was only about half the theoretical maximum.  
    The limit applies only to solids and liquids at pressures typically found on Earth. At pressures millions of times that of Earth’s atmosphere, sound waves move faster and could surpass the limit.
    One material expected to boast a high sound speed exists only at such high pressures: hydrogen squeezed hard enough to turn into a solid metal (SN: 6/28/19). That metal has never been convincingly created, so the researchers calculated the expected speed instead of using a measurement. Above about 6 million times Earth’s atmospheric pressure, the sound speed limit would be broken, the calculations suggest.
    The role of the fundamental constants in sound’s maximum speed results from how the waves move through materials. Sound travels thanks to the electromagnetic interactions of neighboring atoms’ electrons, which is where the fine-structure constant comes into play. And the proton-electron mass ratio is important because, although the electrons are interacting, the nuclei of the atoms move as a result.
    The fine-structure constant and the proton-electron mass ratio are dimensionless constants, meaning there are no units attached to them (so their value does not depend on any particular system of units). Such dimensionless constants fascinate physicists, because the values are crucial to the existence of the universe as we know it (SN: 11/2/16). For example, if the fine-structure constant were significantly altered, stars, planets and life couldn’t have formed. But no one can explain why these all-important numbers have the values they do.
    “When I have sleepless nights, I sometimes think about this,” says Trachenko, of Queen Mary University of London. So he and colleagues are extending this puzzle from the cosmic realm to more commonplace concepts like the speed of sound. Trachenko and coauthor Vadim Veniaminovich Brazhkin of the Institute for High Pressure Physics, in Troitsk, Russia, also reported a minimum possible viscosity for liquids in the April 24 Science Advances.
    That viscosity limit depends on the Planck constant, a number at the heart of quantum mechanics, the math that governs physics on very small scales. If the Planck constant were 100 times larger, Trachenko says, “water would be like honey, and that probably would be the end of life because the processes in cells would not flow as efficiently.” More

  • in

    Record-breaking gravitational waves reveal that midsize black holes do exist

    The biggest. The farthest. The most energetic. A new detection of gravitational waves from two colliding black holes has racked up multiple superlatives.
    What’s more, it also marks the first definitive sighting of an intermediate mass black hole, one with a mass between 100 and 100,000 times the sun’s mass. That midsize black hole was forged when the two progenitor black holes coalesced to form a larger one with about 142 solar masses. It significantly outweighs all black holes previously detected via gravitational waves, ripples that wrinkle spacetime in the aftermath of extreme events.
    “This is the big guy we’ve been waiting for, for the longest time,” says Emanuele Berti, a physicist at Johns Hopkins University who was not involved with the research. One of the behemoth’s two progenitors was itself so massive that scientists are pondering how to explain its existence.
    Detected on May 21, 2019, the gravitational waves originated from a source about 17 billion light-years from Earth, making this the most distant detection confirmed so far. It’s also the most energetic event yet seen, radiating about eight times the equivalent of the sun’s mass in energy, says astrophysicist Karan Jani of Vanderbilt University in Nashville, a member of the LIGO Scientific Collaboration. “I hope it deserves its own entry in the record book.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    The new event dethrones the previous record-holder, a collision that occurred about 9 billion light-years away that radiated about five solar masses worth of energy, and created a black hole of 80 solar masses (SN: 12/4/18).
    Researchers with LIGO, or the Advanced Laser Interferometer Gravitational-Wave Observatory, in the United States and Advanced Virgo in Italy reported the new detection September 2 in two papers in Physical Review Letters and the Astrophysical Journal Letters.
    While scientists know of black holes with tens of solar masses and others with millions or billions of solar masses, the intermediate echelon has remained elusive. Previous purported sightings of intermediate mass black holes have been questioned (SN:1/22/16).
    But, for the new event, “there’s no doubt,” says astrophysicist Cole Miller of University of Maryland at College Park, who was not involved with the study. “This demonstrates that there is now at least one intermediate mass black hole in the universe.”
    The black hole’s two progenitors were themselves heftier than any seen colliding before — at about 85 and 66 times the mass of the sun. That has scientists puzzling over how this smashup came to be.

    Normally, physicists expect that the black holes involved in these mergers would each have formed in the collapse of a dying star. But in the new event, the larger of the pair is so big that it couldn’t have formed that way. The known processes that go on within a star’s core mean that stars that are the right mass to form such a big black hole would blow themselves apart completely, rather than leaving behind a corpse.
    Instead, it might be that one or both of the colliding black holes formed from an earlier round of black hole mergers, within a crowded cluster of stars and black holes (SN: 1/30/17). That would make for a family tree that began with black holes lightweight enough to form from collapsing stars.
    But there’s a problem with the multiple-merger explanation. Each time black holes merge, that coalescence provides a kick to their velocity, which would normally launch the resulting black hole out of the cluster, preventing further mergers.
    However, mergers as massive as the new event seem to be very rare, given that LIGO and Virgo have detected only one. That means, Miller says, “my gosh, you’re allowed to invoke a tooth fairy,” a relatively unlikely process. Perhaps, he says, the kick might sometimes be small enough that the black holes could stay within their cluster and merge again.
    The May 21 gravitational wave event had previously been publicly reported as an unconfirmed candidate, to allow astronomers to look for flashes of light in the sky that might have resulted from the collision. Some researchers had suggested that the waves might have been associated with a flare of light from the center of a distant galaxy (SN: 6/25/20). But that galaxy is significantly closer than the distance now pinpointed in the new papers, at about 8 billion light-years from Earth rather than 17 billion, making the explanation less plausible.
    The longer LIGO and Virgo observe the heavens, the more the bounty of unusual events can be expected to grow, Miller says. “We are going to have a set of ‘gosh, didn’t expect that’ type of events, which are thrilling to think about and extremely informative about the universe.” More

  • in

    The physics of solar flares could help scientists predict imminent outbursts

    Space weather forecasting is a guessing game. Predictions of outbursts from the sun are typically based on the amount of activity observed on the sun’s roiling surface, without accounting for the specific processes behind the blasts.
    But a new technique could help predict the violent eruptions of radiation known as solar flares based on the physics behind them, researchers report in the July 31 Science. When applied to old data, the method anticipated several powerful flares, although it missed some as well.
    Radiation released in solar flares and associated eruptions of charged particles, or plasma,can be harmful. This space weather can disrupt radio communications, throw off satellites, take down power grids and endanger astronauts (SN: 9/11/17). More accurate forecasts could allow operators to switch off sensitive systems or otherwise make preparations to mitigate negative effects.
    Current prediction methods rely on tracking flare-linked phenomena such as large, complex sunspots — dark regions on the sun’s surface with powerful magnetic fields. But that leads to some false alarms.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    In contrast, the new prediction method is rooted in the intricacies of how and when the sun’s tangled loops of magnetic fields rearrange themselves, in a process known as magnetic reconnection, releasing bursts of energy that mark solar flares.
    On the sun’s surface, magnetic fields can get gnarly. Magnetic field lines, imaginary contours that indicate the direction of the magnetic field at various locations, loop and cross over one another like well-mixed spaghetti. When those lines break and reconnect, a burst of energy is released, producing a flare. The details of how and under what conditions this happens have yet to be unraveled.
    In the new study, physicist Kanya Kusano from Nagoya University in Japan and colleagues propose that the largest flares result when two arcing magnetic field lines connect, forming an m-shaped loop, as a smaller loop forms close to the sun’s surface. This “double-arc instability” leads to more magnetic reconnection, and the m-shaped loop expands, unleashing energy.
    Using 11 years’ worth of data from NASA’s Solar Dynamics Observatory spacecraft, the researchers identified regions on the sun with high magnetic activity. For each region, the team determined whether conditions were ripe for a flare-inducing double-arc instability, and then aimed to predict the most powerful flares the sun produces, called X-class flares. The technique correctly predicted seven of nine flares that passed a threshold that the researchers chose, called X2, the second strength subdivision of the X-class.
    The successful predictions suggest that researchers may have identified the physical process that underlies some of the largest outbursts.
    “Prediction is a very good benchmark for how well we can understand nature,” Kusano says.
    The unsuccessful predictions are likewise illuminating: “Even if it fails, it tells us something,” says solar physicist Astrid Veronig of the University of Graz in Austria, who wrote a commentary on the result, also published in Science. The two flares that the technique missed had no associated ejection of plasma from the sun’s surface. “This kind of instability is maybe not a good way to explain these other flares,” Veronig says. They may instead have resulted from magnetic reconnection high above, instead of close to, the sun’s surface.
    The mechanism on which the researchers based their prediction “is really interesting and very insightful,” says solar physicist KD Leka of NorthWest Research Associates in Boulder, Colo. But, she notes, the method couldn’t predict how soon the flares will occur — whether the burst would come an hour or a day after the right conditions first occurred — and it didn’t identify slightly weaker X1 flares, or the next class down, known as M-class flares, which could still be damaging.
    “The mantra that I live by,” Leka says, “is any rule you think you’ve figured out about the sun, it’s going to figure out how to break it.” More

  • in

    A new device can produce electricity using shadows

    Someday, shadows and light could team up to provide power. A new device exploits the contrast between bright spots and shade to create a current that can power small electronics. “We can harvest energy anywhere on Earth, not just open spaces,” says Swee Ching Tan, a materials scientist at the National University of Singapore. Tan […] More