More stories

  • in

    Cosmic filaments may be the biggest spinning objects in space

    Moons do it, stars do it, even whole galaxies do it. Now, two teams of scientists say cosmic filaments do it, too. These tendrils stretching hundreds of millions of light-years spin, twirling like giant corkscrews.

    Cosmic filaments are the universe’s largest known structures and contain most of the universe’s mass (SN: 1/20/14). These dense, slender strands of dark matter and galaxies connect the cosmic web, channeling matter toward galaxy clusters at each strand’s end (SN: 7/5/12).

    At the instant of the Big Bang, matter didn’t rotate; then, as stars and galaxies formed, they began to spin. Until now, galaxy clusters were the largest structures known to rotate. “Conventional thinking on the subject said that’s where spin ends. You can’t really generate torques on larger scales,” says Noam Libeskind, cosmologist at the Leibniz Institute for Astrophysics Potsdam in Germany.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    So the discovery that filaments spin — at a scale that makes galaxies look like specks of dust — presents a puzzle. “We don’t have a full theory of how every galaxy comes to rotate, or every filament comes to rotate,” says Mark Neyrinck, cosmologist at University of the Basque Country in Bilbao, Spain.

    To test for rotation, Neyrinck and colleagues used a 3-D cosmological simulation to measure the velocities of dark matter clumps as the clumps moved around a filament. He and his colleagues describe their results in a paper posted in 2020 at arXiv.org and now in press with the Monthly Notices of the Royal Astronomical Society. Meanwhile, Libeskind and colleagues searched for rotation in the real universe, they report June 14 in Nature Astronomy. Using the Sloan Digital Sky Survey, the team mapped galaxies’ motions and measured their velocities perpendicular to filaments’ axes.

    [embedded content]
    A computer simulation shows how a cosmic filament twists galaxies and dark matter into a strand of the cosmic web. Filaments pull matter into rotation and toward clusters at their ends, visualized here with “test particles” shaped like comets.  

    The two teams detected similar rotational velocities for filaments despite differing approaches, Neyrinck says, an “encouraging [indication] that we’re looking at the same thing.”

    Next, researchers want to tackle what makes these giant space structures spin, and how they get started. “What is that process?” Libeskind says. “Can we figure it out?” More

  • in

    Most planets on tilted orbits pass over the poles of their suns

    Earth is on an orderly path around the sun, orbiting in nearly the same plane as our star’s equator. In 2008, however, astronomers began finding worlds in other solar systems that sail far above and below their star’s equatorial plane.

    Now a surprising discovery about these wrong-way worlds may eventually reveal their origin: Most of them follow polar orbits (SN: 6/17/16). If Earth had such an orbit, every year we’d pass over the sun’s north pole, dive through its equatorial plane, then pass below the sun’s south pole before coming back up again.

    Astronomers Simon Albrecht and Marcus Marcussen at Aarhus University in Denmark and colleagues analyzed 57 planets in other solar systems for which the researchers could determine the true tilt between a planet’s orbit and its star’s equatorial plane. Two-thirds of the planets have normal orbits, tilted no more than 40 degrees, the team found. The other 19 planets are misaligned.

    But the orbits of those misaligned planets don’t make just any old angle with their star’s equator. Instead, they pile up around 90 degrees. In fact, all but one of the misaligned planets are on polar orbits, having tilts from 80 to 125 degrees, the astronomers report online May 20 at arXiv.org.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    “It’s very, very strange,” says Amaury Triaud, an astronomer at the University of Birmingham in England who has found a number of misaligned planets but was not involved with the new study. “It’s a beautifully executed idea, and the result is most intriguing,” he says. “It’s so new and so weird.”

    The result may lend insight into the biggest mystery about these planets: how they arose (SN: 10/18/13). Such worlds were a shock to astronomers, because planets form inside pancake-shaped disks of gas and dust orbiting in their stars’ equatorial planes. Thus, planets should lie near the plane of their sun’s equator, too. In our solar system, for example, Earth’s orbit tilts only 7 degrees from the solar equatorial plane, and even Pluto — which many astronomers no longer call a planet — has an orbit tilted only 12 degrees from that plane (and 17 degrees from the Earth’s orbital plane).

    “At the moment, we are not sure what is the underlying mechanism” or mechanisms for creating misaligned planets, Albrecht admits. Whatever it is, though, it should account for the newly discovered plethora of perpendicular planets, he says.

    A possible clue, Albrecht says, comes from the single exception to the rule: the one misaligned planet in the sample that is not on a polar orbit. This planet also happens to be the most massive in the sample, packing the mass of between five and eight Jupiters. Albrecht says that may be just a coincidence — or it may reveal something about how the other planets became misaligned.

    In the future, the astronomers hope to understand how these wayward worlds acquired their odd orbits. All known misaligned planets orbit close to their stars, but are these worlds more likely than normal, close-in planets to have giant planets near them? The scientists don’t yet know, but if they find such a correlation, those companions may have somehow flung these bizarre worlds onto their peculiar planetary paths. More

  • in

    China’s first Mars rover has landed and is sending its first pictures

    China’s first Mars rover is taking in the view of its new home. The Zhurong rover touched down on the Red Planet on May 14, and its first images reached Earth on May 19.

    Zhurong, named for an ancient Chinese god of fire, has been orbiting the Red Planet since February 10, when China’s Tianwen-1 spacecraft entered Martian orbit. The rover landed in a vast plain called Utopia Planitia — also where NASA’s Viking 2 lander touched down in 1976, although Viking 2’s site was much farther north (SN:  9/11/76).

    The orbiter and rover together mark China’s first Mars mission and make China only the second country to successfully land a rover there. China has previously landed two rovers on the moon, named Yutu and Yutu-2, with the Chang’e-3 and Chang’e-4 missions (SN: 1/3/19).

    [embedded content]
    The Tianwen-1 orbiter captured a video of the lander and rover separating from the orbiter before plunging into the Martian atmosphere.

    Unlike NASA’s Perseverance rover, which landed on Mars in February and beamed photos back almost immediately (SN: 2/17/21), Zhurong took a few days to send its first glimpses of the Martian surface back to Earth. That’s because the rover had to wait for the Tianwen-1 orbiter to move into a lower orbit to allow it to relay more data between Mars and Earth.

    This image was taken with Zhurong’s rear navigation camera. It shows the rover’s solar panels and antenna.CNSA

    The first images are from Zhurong’s hazard avoidance and navigation cameras. For now, the rover is still perched atop its landing platform. After several days looking around and checking out its instruments, Zhurong will roll down the lander’s ramps and onto the Martian soil, possibly on May 21 or 22, according to a report from China’s state-run Xinhua news agency after the landing.

    Zhurong will spend at least three months studying the geology at Utopia Planitia and searching for water ice beneath the surface. The rover carries a ground-penetrating radar that can help distinguish between rock and ice beneath the surface, similar to a technique used by the Yutu-2 rover on the moon (SN: 2/26/20).  It also carries an instrument to analyze surface chemistry.

    The Tianwen-1 orbiter will remain active for a full Martian year (about 687 Earth days), observing the ground from space with a high-resolution camera. More

  • in

    Planet-forming disks around stars may come preloaded with ingredients for life

    The chemistry leading to life may start before stars are even born.

    In the planet-forming disk of gas and dust around a young star, astronomers have detected methanol. The disk is too warm for the methanol to have formed there, so this complex organic molecule probably originated in the interstellar cloud that collapsed to form the star and its disk, researchers report online May 10 in Nature Astronomy. This finding offers evidence that at least some organic matter from interstellar space can seed the disks around newborn stars to provide potential ingredients for life on new planets.

    “That’s pretty exciting, because it means that, in principle, all planets forming around any kind of star could have this material,” says Viviana Guzmán, an astrochemist at the Pontifical Catholic University of Chile in Santiago not involved in the work.

    Complex organic molecules have been observed in interstellar clouds of gas and dust (SN: 3/22/21), as well as in planet-forming disks around young stars (SN: 2/18/08). But astronomers didn’t know whether organic material from interstellar space could survive the formation of a protoplanetary disk, or whether organic chemistry had to start from scratch around new stars.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    “When you form a star and its disk, it’s not a very easy, breezy process,” says Alice Booth, an astronomer at Leiden University in the Netherlands. Radiation from the new star and shock waves in the imploding material, she says, “could destroy a lot of the molecules that were originally in your initial cloud.”

    Using the ALMA radio telescope array in Chile, Booth and colleagues observed the disk around a bright, young star named HD 100546, about 360 light-years away. There, the team spotted methanol, which is thought to be a building block for life’s molecules, such as amino acids and proteins.

    Methanol could not have originated in the disk, because this molecule forms when hydrogen interacts with carbon monoxide ice, which freezes below temperatures of about –253° Celsius. The disk around HD 100546 is much warmer than that, heated by a star whose surface is roughly 9,700° C — some 4,000 degrees hotter than the sun. So the disk must have inherited its methanol from the interstellar cloud that forged its central star, the researchers conclude.

    “This is the first evidence that the really interesting chemistry we see early on [in star formation] actually survives incorporation into the planet-forming disk,” says Karin Öberg, an astrochemist at Harvard University who was not involved in the work. Astronomers should next search the disks around other young stars for methanol or other organic molecules, she says, to “explore whether this is a one-time, get lucky kind of thing, or whether we can safely assume that planet-forming disks always inherit these kinds of molecules.” More

  • in

    A rare glimpse of a star before it went supernova defies expectations

    A rare glimpse of a star before it exploded in a fiery supernova looks nothing like astronomers expected, a new study suggests.

    Images from the Hubble Space Telescope reveal that a relatively cool, puffy star ended its life in a hydrogen-free supernova. Until now, supernovas without hydrogen were thought to originate only from extremely hot, compact stars.

    The discovery “is a very important test case for stellar evolution,” says Sung-Chul Yoon, an astrophysicist at Seoul National University in South Korea, who was not involved in the work. Theorists have some ideas about how massive stars behave right before they blow up, but such hefty stars are scant in the local universe and many are nowhere near ready to go supernova, Yoon says. Retroactively identifying the star responsible for a supernova provides an opportunity to test scenarios of how stars evolve right before exploding.

    Finding those stars, however, is difficult, explains Charlie Kilpatrick, an astronomer at Northwestern University in Evanston, Ill. A telescope must have looked at that exact region of the sky in the years leading up to the supernova. And the explosion must have happened close enough for light from its much fainter source star to have reached a telescope.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Although both conditions are tricky to meet, Kilpatrick is undaunted by the hunt. After scientists discovered a supernova in December 2019, in a galaxy called NGC 4666 about 46 million light-years away, he and colleagues rushed to check old Hubble observations from the same region of the sky. They wanted to find the star behind the explosion, dubbed SN 2019yvr.

    After pouring over images and cross-checking observations with those from ground-based telescopes, the team found their quarry: a star at the same spot as the supernova, observed about 2.6 years before the explosion. It appeared to be a yellow star about 6,500° Celsius and about 320 times wider than the sun.

    “I was kind of puzzled by all that,” Kilpatrick says. The supernova SN 2019yvr lacked hydrogen, so its progenitor was expected to be hydrogen-deficient, too. But “if a star lacks a hydrogen envelope, then you expect to be seeing deeper inside of the star to the hotter layers,” Kilpatrick says. That is, the star should have looked extremely hot and blue and compact — maybe 10,0000 to 50,000° C, and no more than 50 times wider than the sun. The cool, large, yellow progenitor of SN 2019yvr, on the other hand, appeared to be padded with lots of hydrogen. The researchers report the results May 5 in the Monthly Notices of the Royal Astronomical Society.

    For this kind of star to have produced a supernova like SN 2019yvr, it must have shed much of its hydrogen before blowing up, Kilpatrick says. But how?

    He and colleagues have come up with a couple scenarios. The star could have expelled much of its hydrogen into space through violent eruptions, possibly caused by some instability in the star’s core or interference from another star nearby. Or perhaps the star’s hydrogen could have been stripped off by another star that was in orbit around it.

    To whittle these possibilities down, Jan Eldridge, an astrophysicist at the University of Auckland in New Zealand, suggests turning the Hubble telescope back on that area of the sky. Astronomers should first make sure that the star seen 2.6 years before SN 2019yvr really is gone now, says Eldridge, who was not involved in the work. Researchers could also check whether a star that once orbited SN 2019yvr’s progenitor still remains.

    “They’ve found a mystery, and they’ve got some solutions,” Eldridge notes. Trying to figure out how such an unlikely star pulled off this particular supernova, she says, “is going to be fun.” More

  • in

    Stars made of antimatter could lurk in the Milky Way

    Fourteen pinpricks of light on a gamma-ray map of the sky could fit the bill for antistars, stars made of antimatter, a new study suggests.

    These antistar candidates seem to give off the kind of gamma rays that are produced when antimatter — matter’s oppositely charged counterpart — meets normal matter and annihilates. This could happen on the surfaces of antistars as their gravity draws in normal matter from interstellar space, researchers report online April 20 in Physical Review D.

    “If, by any chance, one can prove the existence of the antistars … that would be a major blow for the standard cosmological model,” says Pierre Salati, a theoretical astrophysicist at the Annecy-le-Vieux Laboratory of Theoretical Physics in France not involved in the work. It “would really imply a significant change in our understanding of what happened in the early universe.”

    It’s generally thought that although the universe was born with equal amounts of matter and antimatter, the modern universe contains almost no antimatter (SN: 3/24/20). Physicists typically think that as the universe evolved, some process led to matter particles vastly outnumbering their antimatter alter egos (SN: 11/25/19). But an instrument on the International Space Station recently cast doubt on this assumption by detecting hints of a few antihelium nuclei. If those observations are confirmed, such stray antimatter could have been shed by antistars.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Intrigued by the possibility that some of the universe’s antimatter may have survived in the form of stars, a team of researchers examined 10 years of observations from the Fermi Gamma-ray Space Telescope. Among nearly 5,800 gamma-ray sources in the catalog, 14 points of light gave off gamma rays with energies expected of matter-antimatter annihilation, but did not look like any other known type of gamma-ray source, such as a pulsar or black hole.

    Based on the number of observed candidates and the sensitivity of the Fermi telescope, the team calculated how many antistars could exist in the solar neighborhood. If antistars existed within the plane of the Milky Way, where they could accrete lots of gas and dust made of ordinary matter, they could emit lots of gamma rays and be easy to spot. As a result, the handful of detected candidates would imply that only one antistar exists for every 400,000 normal stars.

    If, on the other hand, antistars tended to exist outside the plane of the galaxy, they would have much less opportunity to accrete normal matter and be much harder to find. In that scenario, there could be up to one antistar lurking among every 10 normal stars.

    But proving that any celestial object is an antistar would be extremely difficult, because besides the gamma rays that could arise from matter-antimatter annihilation, the light given off by antistars is expected to look just like the light from normal stars. “It would be practically impossible to say that [the candidates] are actually antistars,” says study coauthor Simon Dupourqué, an astrophysicist at the Institute of Research in Astrophysics and Planetology in Toulouse, France. “It would be much easier to disprove.”

    Astronomers could watch how gamma rays or radio signals from the candidates change over time to double-check that these objects aren’t really pulsars. Researchers could also look for optical or infrared signals that might indicate the candidates are actually black holes.

    “Obviously this is still preliminary … but it’s interesting,” says Julian Heeck, a physicist at the University of Virginia in Charlottesville not involved in the work.

    The existence of antistars would imply that substantial amounts of antimatter somehow managed to survive in isolated pockets of space. But Heeck doubts that antistars, if they exist, would be abundant enough to account for all the universe’s missing antimatter. “You would still need an explanation for why matter overall dominates over antimatter.” More

  • in

    Fast radio bursts could help solve the mystery of the universe’s expansion

    Astronomers have been arguing about the rate of the universe’s expansion for nearly a century. A new independent method to measure that rate could help cast the deciding vote.

    For the first time, astronomers calculated the Hubble constant — the rate at which the universe is expanding — from observations of cosmic flashes called fast radio bursts, or FRBs. While the results are preliminary and the uncertainties are large, the technique could mature into a powerful tool for nailing down the elusive Hubble constant, researchers report April 12 at arXiv.org.

    Ultimately, if the uncertainties in the new method can be reduced, it could help settle the longstanding debate that holds our understanding of the universe’s physics in the balance (SN: 7/30/19).

    “I see great promises in this measurement in the future, especially with the growing number of detected repeated FRBs,” says Stanford University astronomer Simon Birrer, who was not involved with the new work.

    Astronomers typically measure the Hubble constant in two ways. One uses the cosmic microwave background, the light released shortly after the Big Bang, in the distant universe. The other uses supernovas and other stars in the nearby universe. These approaches currently disagree by a few percent. The new value from FRBs comes in at an expansion rate of about 62.3 kilometers per second for every megaparsec (about 3.3 million light-years). While lower than the other methods, it’s tentatively closer to the value from the cosmic microwave background, or CMB.

    “Our data agrees a little bit more with the CMB side of things compared to the supernova side, but the error bar is really big, so you can’t really say anything,” says Steffen Hagstotz, an astronomer at Stockholm University. Nonetheless, he says, “I think fast radio bursts have the potential to be as accurate as the other methods.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    No one knows exactly what causes FRBs, though eruptions from highly magnetic neutron stars are one possible explanation (SN: 6/4/20). During the few milliseconds when FRBs blast out radio waves, their extreme brightness makes them visible across large cosmic distances, giving astronomers a way to probe the space between galaxies (SN: 5/27/20).

    As an FRB signal travels through the dust and gas separating galaxies, it becomes scattered in a predictable way that causes some frequencies to arrive slightly later than others. The farther away the FRB, the more dispersed the signal. Comparing this delay with distance estimates to nine known FRBs, Hagstotz and colleagues measured the Hubble constant.

    The largest error in the new method comes from not knowing precisely how the FRB signal disperses as it exits its home galaxy before entering intergalactic space, where the gas and dust content is better understood. With a few hundred FRBs, the team estimates that it could reduce the uncertainties and match the accuracy of other methods such as supernovas.

    “It’s a first measurement, so not too surprising that the current results are not as constraining as other more matured probes,” says Birrer.

    New FRB data might be coming soon. Many new radio observatories are coming online and larger surveys, such as ones proposed for the Square Kilometer Array, could discover tens to thousands of FRBs every night. Hagstotz expects there will sufficient FRBs with distance estimates in the next year or two to accurately determine the Hubble constant. Such FRB data could also help astronomers understand what’s causing the bright outbursts.

    “I am very excited about the new possibilities that we will have soon,” Hagstotz says. “It’s really just beginning.” More

  • in

    50 years ago, experiments hinted at the possibility of life on Mars

    Organics on Mars — Science News, March 27, 1971

    [Researchers] have exposed a mixture of gases simulating conditions believed to exist on the surface of Mars to ultraviolet radiation. The reaction produced organic compounds. They conclude that the ultraviolet radiation bombarding the surface of Mars could be producing organic matter on that planet.… The fact that such organic compounds may be produced on the Martian surface increases the possibility of life on Mars.

    Update

    In 1976, a few years after those experiments, NASA took its search for organic molecules to the Red Planet’s surface. That year, the Viking landers became the first U.S. mission to land on Mars. Though the landers failed to turn up evidence in the soil, NASA has continued the hunt. In 2018, the Curiosity rover found hints of life: organic molecules in rocks and seasonal shifts in atmospheric methane. A new phase of the hunt began in February when the Perseverance rover landed on Mars (SN Online: 2/17/21). It will find and store rocks that might preserve signs of past life for eventual return to Earth. More